期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
非负矩阵集分解 被引量:1
1
作者 李乐 章毓晋 《电子与信息学报》 EI CSCD 北大核心 2009年第2期255-260,共6页
非负矩阵分解(Nonnegative Matrix Factorization,NMF)是一种新近被提出的方法,它以非线性的方式实现对非负多元数据的纯加性、局部化、线性和低维描述。NMF可使数据中的潜在结构、特征或模式变得清晰,因此它作为一种有效的特征提取手... 非负矩阵分解(Nonnegative Matrix Factorization,NMF)是一种新近被提出的方法,它以非线性的方式实现对非负多元数据的纯加性、局部化、线性和低维描述。NMF可使数据中的潜在结构、特征或模式变得清晰,因此它作为一种有效的特征提取手段已被成功应用在许多领域的研究中。但是,NMF的处理对象本质上是向量,用NMF处理数据矩阵集时要先将被处理矩阵集中的矩阵逐一矢量化,这常使对应的学习问题成为典型的小样本问题,从而使NMF结果的描述力不强、推广性差。为克服这两个问题,并保留NMF的好的特性,该文提出了非负矩阵集分解(Nonnegative Matrix-Set Factorization,NMSF),不同于NMF处理数据矩阵的矢量化结果,NMSF直接处理数据矩阵本身。理论分析显示:处理数据矩阵集时,NMSF会比NMF描述力强、推广性好。为了说明NMSF如何实现,也为了能对NMSF的性能做实验验证,构造了NMSF实现方式之一的基于双线性型的NMSF(Bilinear Form-Based NMSF,BFBNMSF)算法。BFBNMSF和NMF的比较实验结果支持了理论分析的结论。需要指出,更佳的描述力和更好的推广性意味着NMSF比NMF更善于抓住数据矩阵的本质特征。 展开更多
关键词 图像描述 特征提取 非负矩阵集分解 非负矩阵分解 多元数据描述
在线阅读 下载PDF
基于超像素的流形正则化稀疏约束NMF混合像元分解算法 被引量:3
2
作者 李登刚 陈香香 +1 位作者 李华丽 王忠美 《计算机应用》 CSCD 北大核心 2019年第10期3100-3106,共7页
针对传统非负矩阵分解(NMF)法用于高光谱图像混合像元分解时产生的分解结果精度不高、对噪声敏感等问题,提出一种基于超像素的流形正则化稀疏约束NMF混合像元分解算法——MRS-NMF。首先,通过基于熵率的超像素分割来构造高光谱图像的流... 针对传统非负矩阵分解(NMF)法用于高光谱图像混合像元分解时产生的分解结果精度不高、对噪声敏感等问题,提出一种基于超像素的流形正则化稀疏约束NMF混合像元分解算法——MRS-NMF。首先,通过基于熵率的超像素分割来构造高光谱图像的流形结构,把原图像分割为k个超像素块并把每个超像素块中具有相似性质的数据点标上相同的标签,定义像素块内有相同标签的任意两个数据点之间的权重矩阵,然后将权重矩阵应用于NMF的目标函数中以构造出流形正则化约束项;第二,在目标函数中添加二次抛物线函数以完成稀疏约束;最后,采用乘法迭代更新法则求解目标函数以得到端元矩阵和丰度矩阵的求解公式,同时设置最大迭代次数和容忍误差阈值,迭代运算得到最终结果。该方法有效利用了高光谱图像的光谱和空间信息。实验结果表明,在模拟的高光谱数据中,与传统的流形稀疏约束的非负矩阵分解(GLNMF)、L1/2-NMF和顶点成分分析全约束最小二乘法(VCA-FCLS)等方法相比,MRS-NMF可以提高0.016~0.063的端元分解精度和0.01~0.05的丰度分解精度;而在真实的高光谱图像中,MRS-NMF较传统的GLNMF、顶点成分分析法(VCA)、最小体积约束的非负矩阵分解(MVCNMF)等方法可以平均提高0.001~0.0437的端元分解精度。所提MRS-NMF算法有效地提高了混合像元分解的精度,同时具有较好的抗噪性能。 展开更多
关键词 混合像元分解 非负矩阵分解 超像素分割 流形正则化 稀疏性
在线阅读 下载PDF
Hyperspectral image unmixing algorithm based on endmember-constrained nonnegative matrix factorization 被引量:1
3
作者 Yan ZHAO Zhen ZHOU +2 位作者 Donghui WANG Yicheng HUANG Minghua YU 《Frontiers of Optoelectronics》 EI CSCD 2016年第4期627-632,共6页
The objective function of classical nonnegative matrix factorization (NMF) is non-convexity, which affects the obtaining of optimal solutions. In this paper, we proposed a NMF algorithm, and this algorithm was based... The objective function of classical nonnegative matrix factorization (NMF) is non-convexity, which affects the obtaining of optimal solutions. In this paper, we proposed a NMF algorithm, and this algorithm was based on the constraint of endmember spectral correlation minimization and endmember spectral difference max- imization. The size of endrnember spectral overall- correlation was measured by the correlation function, and correlation function was defined as the sum of the absolute values of every two correlation coefficient between the spectra. In the difference constraint of the endmember spectra, the mutation of matrix trace was slowed down by introducing the natural logarithm function. Combining the image decomposition error with the influences of end- member spectra, in the objective function the projection gradient was used to achieve NMF. The effectiveness of algorithm was verified by the simulated hyperspeetral images and real hyperspectral images. 展开更多
关键词 hyperspeclral image UNMIXING nonnegativematrix factorization (NMF) correlation logarithm function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部