This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability o...This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21].展开更多
It is well-known that the propagation phenomena of nonlocal dispersal equations have been extensively studied,and the known results on the interface dynamics of this equation are under the compactly supported initial ...It is well-known that the propagation phenomena of nonlocal dispersal equations have been extensively studied,and the known results on the interface dynamics of this equation are under the compactly supported initial value.Moreover,there was no explicit formula regarding the interface due to the peculiarity of nonlocal dispersal operators.Anatural question is whether it is possible to provide a precise characterization of the interface with respect to small parameter for the general initial values(including exponentially bounded and unbounded).This paper is concerned with the interface dynamics of the nonlocal dispersal equation with scaling parameter.For the exponentially bounded initial value,by choosing the hyperbolic scaling,we show that at a very small time,the interface is confined within a generated layer whose thickness is at most O(√ɛ|ln ɛ|),,and subsequently,the interface propagates at a linear speed determined by the decay rate of initial value.For a class of exponentially unbounded initial value,by introducing the nonlinear scaling based on the decay of initial value,we deduce the corresponding Hamilton-Jacobi equation and describe precisely the propagation of the interface,which provides a superlinear speed of the interface.The investigation of the interface dynamics under different scaling reflects multiplex propagation modes in spatial dynamics and provides a new perspective on the wave propagation in nonlocal dispersal equations.展开更多
In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reve...In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.展开更多
In this paper,we investigate the blow-up phenomenon for a class of logarithmic viscoelastic equations with delay and nonlocal terms under acoustic boundary conditions.Using the energy method,we prove that nontrivial s...In this paper,we investigate the blow-up phenomenon for a class of logarithmic viscoelastic equations with delay and nonlocal terms under acoustic boundary conditions.Using the energy method,we prove that nontrivial solutions with negative initial energy will blow up in finite time,and provide an upper bound estimate for the blow-up time.Additionally,we also derive a lower bound estimate for the blow-up time.展开更多
This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditi...This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditions for that the solution exists globally or blows up in the finite time.Then the blow-up time is also given.At last,we obtain a property differing from the local source which the blow-up set is the entire interval.展开更多
In this paper,we use the Riemann-Hilbert(RH)method to investigate the Cauchy problem of the reverse space-time nonlocal Hirota equation with step-like initial data:q(z,0)=o(1)as z→-∞and q(z,0)=δ+o(1)as z→∞,where...In this paper,we use the Riemann-Hilbert(RH)method to investigate the Cauchy problem of the reverse space-time nonlocal Hirota equation with step-like initial data:q(z,0)=o(1)as z→-∞and q(z,0)=δ+o(1)as z→∞,whereδis an arbitrary positive constant.We show that the solution of the Cauchy problem can be determined by the solution of the corresponding matrix RH problem established on the plane of complex spectral parameterλ.As an example,we construct an exact solution of the reverse space-time nonlocal Hirota equation in a special case via this RH problem.展开更多
The paper is devoted to establishing the long-time behavior of solutions to the extensible beam equation with rotational inertia and nonlocal strong damping.Within the theory of asymptotical smoothness,we investigate ...The paper is devoted to establishing the long-time behavior of solutions to the extensible beam equation with rotational inertia and nonlocal strong damping.Within the theory of asymptotical smoothness,we investigate the existence of the attractor by using the contractive function method and more detailed estimates.展开更多
In this paper, we consider the existence of pullback random exponential attractor for non-autonomous random reaction-diffusion equation driven by nonlinear colored noise defined onR^(N) . The key steps of the proof ar...In this paper, we consider the existence of pullback random exponential attractor for non-autonomous random reaction-diffusion equation driven by nonlinear colored noise defined onR^(N) . The key steps of the proof are the tails estimate and to demonstrate the Lipschitz continuity and random squeezing property of the solution for the equation defined on R^(N) .展开更多
Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenk...Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged–hinged, clamped–clamped and clamped–hinged ends. For a hinged–hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped–clamped and clamped–hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short,explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.展开更多
In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured ...In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.展开更多
A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are consider...A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.展开更多
In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state...In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.展开更多
We conduct two group reductions of the Ablowitz-Kaup-Newell-Segur matrix spectral problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified Korteweg-de Vries equations. One reduction ...We conduct two group reductions of the Ablowitz-Kaup-Newell-Segur matrix spectral problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified Korteweg-de Vries equations. One reduction is local, replacing the spectral parameter with its negative and the other is nonlocal, replacing the spectral parameter with itself. Then by taking advantage of distribution of eigenvalues, we generate soliton solutions from the reflectionless Riemann-Hilbert problems, where eigenvalues could equal adjoint eigenvalues.展开更多
A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect ...A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space.展开更多
In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by usi...In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.展开更多
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie po...In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.展开更多
In this paper, we establish sufficient conditions for the controllability of nonlinear neutral evolution equations with nonlocal conditions. The result is obtained by using Krasnoselski-Schaefer type fixed point theorem.
The numerical computation of nonlocal Schrödinger equations (SEs) on the whole real axis is considered. Based on the artifcial boundary method, we frst derive the exact artifcial nonrefecting boundary conditions....The numerical computation of nonlocal Schrödinger equations (SEs) on the whole real axis is considered. Based on the artifcial boundary method, we frst derive the exact artifcial nonrefecting boundary conditions. For the numerical implementation, we employ the quadrature scheme proposed in Tian and Du (SIAM J Numer Anal 51:3458-3482, 2013) to discretize the nonlocal operator, and apply the z-transform to the discrete nonlocal system in an exterior domain, and derive an exact solution expression for the discrete system. This solution expression is referred to our exact nonrefecting boundary condition and leads us to reformulate the original infnite discrete system into an equivalent fnite discrete system. Meanwhile, the trapezoidal quadrature rule is introduced to discretize the contour integral involved in exact boundary conditions. Numerical examples are fnally provided to demonstrate the efectiveness of our approach.展开更多
In this paper, nonlinear constitutive equations are deduced strictly according to the constitutive axioms of rational continuum mechanics. The existing judgments are modified and improved. The results show that the co...In this paper, nonlinear constitutive equations are deduced strictly according to the constitutive axioms of rational continuum mechanics. The existing judgments are modified and improved. The results show that the constitutive responses of nonlocal thermoelastic body are related to the curvature and higher order gradient of its material space, and there exists an antisymmetric stress whose average value in the domain occupied by thermoelastic body is equal to zero. The expressions of the antisymmetric stress and the nonlocal residuals are given. The conclusion that the directions of thermal conduction and temperature gradient are consistent is reached. In addition, the objectivity about the nonlocal residuals and the energy conservation law of nonlocal field is discussed briefly, and a formula for calculating the nonlocal residuals of energy changing with rigid motion of the spatial frame of reference is derived.展开更多
The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational p...The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy.展开更多
基金supported by NSF of China(11401478)Gansu Provincial Natural Science Foundation(145RJZA220)
文摘This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21].
基金partially supported by the NSF of China(12271226)partially supported by the NSF of China(12201434)+4 种基金the NSF of Gansu Province of China(21JR7RA537)the NSF of Gansu Province of China(21JR7RA535)the Fundamental Research Funds for the Central Universities(lzujbky-2021-kb15)partially supported by the NSF of China(12371170)the R&D Program of Beijing Municipal Education Commission(KM202310028017)。
文摘It is well-known that the propagation phenomena of nonlocal dispersal equations have been extensively studied,and the known results on the interface dynamics of this equation are under the compactly supported initial value.Moreover,there was no explicit formula regarding the interface due to the peculiarity of nonlocal dispersal operators.Anatural question is whether it is possible to provide a precise characterization of the interface with respect to small parameter for the general initial values(including exponentially bounded and unbounded).This paper is concerned with the interface dynamics of the nonlocal dispersal equation with scaling parameter.For the exponentially bounded initial value,by choosing the hyperbolic scaling,we show that at a very small time,the interface is confined within a generated layer whose thickness is at most O(√ɛ|ln ɛ|),,and subsequently,the interface propagates at a linear speed determined by the decay rate of initial value.For a class of exponentially unbounded initial value,by introducing the nonlinear scaling based on the decay of initial value,we deduce the corresponding Hamilton-Jacobi equation and describe precisely the propagation of the interface,which provides a superlinear speed of the interface.The investigation of the interface dynamics under different scaling reflects multiplex propagation modes in spatial dynamics and provides a new perspective on the wave propagation in nonlocal dispersal equations.
文摘In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.
基金supported by the National Natural Sciences Foundation of China(No.62363005)。
文摘In this paper,we investigate the blow-up phenomenon for a class of logarithmic viscoelastic equations with delay and nonlocal terms under acoustic boundary conditions.Using the energy method,we prove that nontrivial solutions with negative initial energy will blow up in finite time,and provide an upper bound estimate for the blow-up time.Additionally,we also derive a lower bound estimate for the blow-up time.
基金Supported by the National Natural Science Foundation of China(10571024)
文摘This paper deals with the properties of the solution to a class of nonlocal degenerate reaction-diffusion equation with nonlocal source,subject to the null Dirichlet boundary condition.We first give sufficient conditions for that the solution exists globally or blows up in the finite time.Then the blow-up time is also given.At last,we obtain a property differing from the local source which the blow-up set is the entire interval.
基金supported by the National Natural Science Foundation of China under Grant No.12147115the Discipline(Subject)Leader Cultivation Project of Universities in Anhui Province under Grant Nos.DTR2023052 and DTR2024046+2 种基金the Natural Science Research Project of Universities in Anhui Province under Grant No.2024AH040202the Young Top Notch Talents and Young Scholars of High End Talent Introduction and Cultivation Action Project in Anhui Provincethe Scientific Research Foundation Funded Project of Chuzhou University under Grant Nos.2022qd022 and 2022qd038。
文摘In this paper,we use the Riemann-Hilbert(RH)method to investigate the Cauchy problem of the reverse space-time nonlocal Hirota equation with step-like initial data:q(z,0)=o(1)as z→-∞and q(z,0)=δ+o(1)as z→∞,whereδis an arbitrary positive constant.We show that the solution of the Cauchy problem can be determined by the solution of the corresponding matrix RH problem established on the plane of complex spectral parameterλ.As an example,we construct an exact solution of the reverse space-time nonlocal Hirota equation in a special case via this RH problem.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1210150211961059)the University Innovation Project of Gansu Province(Grant No.2023B-062).
文摘The paper is devoted to establishing the long-time behavior of solutions to the extensible beam equation with rotational inertia and nonlocal strong damping.Within the theory of asymptotical smoothness,we investigate the existence of the attractor by using the contractive function method and more detailed estimates.
基金supported by the NSFC(12271141)supported by the Fundamental Research Funds for the Central Universities(B240205026)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX24_0821).
文摘In this paper, we consider the existence of pullback random exponential attractor for non-autonomous random reaction-diffusion equation driven by nonlinear colored noise defined onR^(N) . The key steps of the proof are the tails estimate and to demonstrate the Lipschitz continuity and random squeezing property of the solution for the equation defined on R^(N) .
基金the School of Civil and Environmental Engineering at Nanyang Technological University, Singapore for kindly supporting this research topic
文摘Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged–hinged, clamped–clamped and clamped–hinged ends. For a hinged–hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped–clamped and clamped–hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short,explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.
基金supported by the NSF of Ningxia(2022AAC03234)the NSF of China(11761004),the Construction Project of First-Class Disciplines in Ningxia Higher Education(NXYLXK2017B09)the Postgraduate Innovation Project of North Minzu University(YCX23074).
文摘In this article, we consider a backward problem in time of the diffusion equation with local and nonlocal operators. This inverse problem is ill-posed because the solution does not depend continuously on the measured data. Inspired by the classical Landweber iterative method and Fourier truncation technique, we develops a modified Landweber iterative regularization method to restore the continuous dependence of solution on the measurement data. Under the a-priori and a-posteriori choice rules for the regularized parameter, the convergence estimates for the regularization method are derived. Some results of numerical simulation are provided to verify the stability and feasibility of our method in dealing with the considered problem.
基金School of Civil and Environmental Engineering at Nanyang Technological University, Singapore for kindly supporting this research topic.
文摘A nonlocal elastic micro/nanobeam is theoretically modeled with the consideration of the surface elasticity, the residual surface stress, and the rotatory inertia,in which the nonlocal and surface effects are considered. Three types of boundary conditions, i.e., hinged-hinged, clamped-clamped, and clamped-hinged ends, are examined. For a hinged-hinged beam, an exact and explicit natural frequency equation is derived based on the established mathematical model. The Fredholm integral equation is adopted to deduce the approximate fundamental frequency equations for the clamped-clamped and clamped-hinged beams. In sum, the explicit frequency equations for the micro/nanobeam under three types of boundary conditions are proposed to reveal the dependence of the natural frequency on the effects of the nonlocal elasticity, the surface elasticity, the residual surface stress, and the rotatory inertia, providing a more convenient means in comparison with numerical computations.
文摘In this paper, we prove the existence of random attractors for a stochastic reaction-diffusion equation with distribution derivatives on unbounded domains. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears spatially distributed temporal white noise. The stochastic reaction-diffusion equation is recast as a continuous random dynamical system and asymptotic compactness for this demonstrated by using uniform estimates far-field values of solutions. The results are new and appear to be optimal.
基金supported in part by NSFC under the grants 11975145, 11972291 and 51771083the Ministry of Science and Technology of China (G2021016032L)the Natural Science Foundation for Colleges and Universities in Jiangsu Province (17 KJB 110020)。
文摘We conduct two group reductions of the Ablowitz-Kaup-Newell-Segur matrix spectral problems to present a class of novel reduced nonlocal reverse-spacetime integrable modified Korteweg-de Vries equations. One reduction is local, replacing the spectral parameter with its negative and the other is nonlocal, replacing the spectral parameter with itself. Then by taking advantage of distribution of eigenvalues, we generate soliton solutions from the reflectionless Riemann-Hilbert problems, where eigenvalues could equal adjoint eigenvalues.
基金Supported by NSFC Grant(11401100,10601021)the foundation of Fujian Education Department(JB14021)the innovation foundation of Fujian Normal University(IRTL1206)
文摘A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space.
文摘In this letter, a class of reaction-diffusion equations, which arise in chemical reaction or ecology and other fields of physics, are investigated. A more general analytical solution of the equation is obtained by using the first integral method.
基金The project supported by National Natural Science Foundation of China under Grant No.10671156the Program for New CenturyExcellent Talents in Universities under Grant No.NCET-04-0968
文摘In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
文摘In this paper, we establish sufficient conditions for the controllability of nonlinear neutral evolution equations with nonlocal conditions. The result is obtained by using Krasnoselski-Schaefer type fixed point theorem.
基金Jiwei Zhang is partially supported by the National Natural Science Foundation of China under Grant No.11771035the NSAF U1530401+3 种基金the Natural Science Foundation of Hubei Province No.2019CFA007Xiangtan University 2018ICIP01Chunxiong Zheng is partially supported by Natural Science Foundation of Xinjiang Autonom ous Region under No.2019D01C026the National Natural Science Foundation of China under Grant Nos.11771248 and 91630205。
文摘The numerical computation of nonlocal Schrödinger equations (SEs) on the whole real axis is considered. Based on the artifcial boundary method, we frst derive the exact artifcial nonrefecting boundary conditions. For the numerical implementation, we employ the quadrature scheme proposed in Tian and Du (SIAM J Numer Anal 51:3458-3482, 2013) to discretize the nonlocal operator, and apply the z-transform to the discrete nonlocal system in an exterior domain, and derive an exact solution expression for the discrete system. This solution expression is referred to our exact nonrefecting boundary condition and leads us to reformulate the original infnite discrete system into an equivalent fnite discrete system. Meanwhile, the trapezoidal quadrature rule is introduced to discretize the contour integral involved in exact boundary conditions. Numerical examples are fnally provided to demonstrate the efectiveness of our approach.
文摘In this paper, nonlinear constitutive equations are deduced strictly according to the constitutive axioms of rational continuum mechanics. The existing judgments are modified and improved. The results show that the constitutive responses of nonlocal thermoelastic body are related to the curvature and higher order gradient of its material space, and there exists an antisymmetric stress whose average value in the domain occupied by thermoelastic body is equal to zero. The expressions of the antisymmetric stress and the nonlocal residuals are given. The conclusion that the directions of thermal conduction and temperature gradient are consistent is reached. In addition, the objectivity about the nonlocal residuals and the energy conservation law of nonlocal field is discussed briefly, and a formula for calculating the nonlocal residuals of energy changing with rigid motion of the spatial frame of reference is derived.
基金supported by National Natural Science Foundation of China(11171241)Program for New Century Excellent Talents in University(NCET-12-1058)
文摘The existence and orbital instability of standing waves for the generalized three- dimensional nonlocal nonlinear SchrSdinger equations is studied. By defining some suitable functionals and a constrained variational problem, we first establish the existence of standing waves, which relys on the inner structure of the equations under consideration to overcome the drawback that nonlocal terms violate the space-scale invariance. We then show the orbital instability of standing waves. The arguments depend upon the conservation laws of the mass and of the energy.