The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect t...The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed.展开更多
This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅)...This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅) ∈ C (R<sup>N</sup> × R<sup>N</sup>, (0,1)), (-Δ)<sup>s(⋅)</sup> is the variable-order fractional Laplacian operator, λ, μ > 0 are two parameters, V: Ω → [0, ∞) is a continuous function, f ∈ C(Ω × R) and q ∈ C(Ω). Under some suitable conditions on f, we obtain two solutions for this problem by employing the mountain pass theorem and Ekeland’s variational principle. Our result generalizes the related ones in the literature.展开更多
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a...A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.展开更多
Dual-point composition control for a high-purity ideal heat integrated distillation column (HIDiC) is addressed in this work. Three measures are suggested and combined for overcoming process inherent nonlinearities:(1...Dual-point composition control for a high-purity ideal heat integrated distillation column (HIDiC) is addressed in this work. Three measures are suggested and combined for overcoming process inherent nonlinearities:(1) variable scaling; (2) multi-model representation of process dynamics and (3) feedforward compensation. These strategies can offer the developed control systems with several distinct advantages: (1) capability of dealing with severe disturbances; (2) tight tuning of controller parameters and (3) high robustness with respect to variation of operating conditions. Simulation results demonstrate the effectiveness of the proposed methodology.展开更多
This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the beh...This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the behavior of the coefficients when time variable tends to positive infinity.Moreover,the global existence of solutions are discussed for non-positive exponents.展开更多
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ...The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.展开更多
We established a photoacoustic imaging(PAI)system that can provide variable gain at different depths.The PAI system consists of a pulsed laser with an optical parametric oscillator working at a 728 nmwavelength and an...We established a photoacoustic imaging(PAI)system that can provide variable gain at different depths.The PAI system consists of a pulsed laser with an optical parametric oscillator working at a 728 nmwavelength and an imaging-acquisition-and-processing unit with an ultrasound transducer.Avoltage-controlled attenuator was used to realize variable gain at different depths when acquiring PAI signals.The proof-of-concept imaging results for variable gain at different depths were achieved using specic phantoms.Both resolution and optical contrast obtained through the results of variable gain for a targeted depth range are better than those of constant gain for all depths.To further testify the function,we imaged the sagittal section of the body of in vivo nude mice.In addition,we imaged an absorption sample embedded in a chicken breast tissue,reaching a maximum imaging depth of4.6 cm.The results obtained using the proposed method showed better resolution and contrast than when using 50 dB gain for all depths.The depth range resolution was1 mm,and the maximum imaging depth of our system reached4.6 cm.Furthermore,blood vessels can be revealed and targeted depth range can be selected in nude mice imaging.展开更多
The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,howeve...The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm.展开更多
A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var...A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.展开更多
Separable nonlinear models are widely used in various fields such as time series analysis, system modeling, and machine learning, due to their flexible structures and ability to capture nonlinear behavior of data. How...Separable nonlinear models are widely used in various fields such as time series analysis, system modeling, and machine learning, due to their flexible structures and ability to capture nonlinear behavior of data. However, identifying the parameters of these models is challenging, especially when sparse models with better interpretability are desired by practitioners. Previous theoretical and practical studies have shown that variable projection (VP) is an efficient method for identifying separable nonlinear models, but these are based on \(L_2\) penalty of model parameters, which cannot be directly extended to deal with sparse constraint. Based on the exploration of the structural characteristics of separable models, this paper proposes gradient-based and trust-region-based variable projection algorithms, which mainly solve two key problems: how to eliminate linear parameters under sparse constraint;and how to deal with the coupling relationship between linear and nonlinear parameters in the model. Finally, numerical experiments on synthetic data and real time series data are conducted to verify the effectiveness of the proposed algorithms.展开更多
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t...Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.展开更多
针对电动汽车无线充电系统在变电压间歇快速充电过程中由原副边线圈偏移和负载波动引起充电电压不稳定的问题,以及控制器参数大多依靠经验值和试凑法选取的问题,提出一种基于粒子群优化算法的无源控制器(passivity based controller,PBC...针对电动汽车无线充电系统在变电压间歇快速充电过程中由原副边线圈偏移和负载波动引起充电电压不稳定的问题,以及控制器参数大多依靠经验值和试凑法选取的问题,提出一种基于粒子群优化算法的无源控制器(passivity based controller,PBC)与非线性干扰观测器(nonlinear disturbance observer,NDO)相结合的复合控制策略。针对无线电能传输(wireless power transfer,WPT)系统副边DC-DC变换器设计考虑干扰补偿的无源控制器,通过引入非线性干扰观测器对干扰量进行估计,将干扰估计值与无源控制器结合,设计适合电动汽车变电压间歇无线充电系统的PBC-NDO复合控制器,采用粒子群多目标优化算法对复合控制器进行参数寻优,进一步提高控制器的抗干扰性能以及动态响应性能,通过仿真和实验验证该策略的有效性。实验结果表明:复合控制器具有强抗干扰性和动态响应性,充电阶段最大稳态误差偏移率为2%,动态响应时间控制在0.6 ms内。展开更多
基金Project(41202191)supported by the National Natural Science Foundation of ChinaProject(2015JM4146)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2015)supported by the Postdoctoral Research Project of Shaanxi Province,China
文摘The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed.
文摘This paper is concerned with the following variable-order fractional Laplacian equations , where N ≥ 1 and N > 2s(x,y) for (x,y) ∈ Ω × Ω, Ω is a bounded domain in R<sup>N</sup>, s(⋅) ∈ C (R<sup>N</sup> × R<sup>N</sup>, (0,1)), (-Δ)<sup>s(⋅)</sup> is the variable-order fractional Laplacian operator, λ, μ > 0 are two parameters, V: Ω → [0, ∞) is a continuous function, f ∈ C(Ω × R) and q ∈ C(Ω). Under some suitable conditions on f, we obtain two solutions for this problem by employing the mountain pass theorem and Ekeland’s variational principle. Our result generalizes the related ones in the literature.
文摘A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment.
基金Supported by the New-Energy and Industry Technology Development Organization (NEDO) through the Energy Conservation Center of Japan.
文摘Dual-point composition control for a high-purity ideal heat integrated distillation column (HIDiC) is addressed in this work. Three measures are suggested and combined for overcoming process inherent nonlinearities:(1) variable scaling; (2) multi-model representation of process dynamics and (3) feedforward compensation. These strategies can offer the developed control systems with several distinct advantages: (1) capability of dealing with severe disturbances; (2) tight tuning of controller parameters and (3) high robustness with respect to variation of operating conditions. Simulation results demonstrate the effectiveness of the proposed methodology.
基金Supported by Shandong Provincial Natural Science Foundation(Grant Nos.ZR2021MA003 and ZR2020MA020).
文摘This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the behavior of the coefficients when time variable tends to positive infinity.Moreover,the global existence of solutions are discussed for non-positive exponents.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1604200)the National Natural Science Foundation of China(Grant No.12261131495)Institute of Systems Science,Beijing Wuzi University(Grant No.BWUISS21).
文摘The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems.
基金the financial support fromNational Natural Science Foundation of China(NSFC)(61675113,61527808,81401539,and 31271056)Science and Technology Research Program of Shenzhen City(JSGG20150331151536448,JCYJ20160428182247170,and JCYJ20170412170255060)+1 种基金Shenzhen basic research layout project(JCYJ20160324163759208)the projects in Shenzhen Medical Engineering Laboratory For Human Auditory-equilibrium Function。
文摘We established a photoacoustic imaging(PAI)system that can provide variable gain at different depths.The PAI system consists of a pulsed laser with an optical parametric oscillator working at a 728 nmwavelength and an imaging-acquisition-and-processing unit with an ultrasound transducer.Avoltage-controlled attenuator was used to realize variable gain at different depths when acquiring PAI signals.The proof-of-concept imaging results for variable gain at different depths were achieved using specic phantoms.Both resolution and optical contrast obtained through the results of variable gain for a targeted depth range are better than those of constant gain for all depths.To further testify the function,we imaged the sagittal section of the body of in vivo nude mice.In addition,we imaged an absorption sample embedded in a chicken breast tissue,reaching a maximum imaging depth of4.6 cm.The results obtained using the proposed method showed better resolution and contrast than when using 50 dB gain for all depths.The depth range resolution was1 mm,and the maximum imaging depth of our system reached4.6 cm.Furthermore,blood vessels can be revealed and targeted depth range can be selected in nude mice imaging.
基金Project supported by the National Key Research and Development Program of China(No.2021YFB3400700)the National Natural Science Foundation of China(Nos.12422201,12072188,12121002,and 12372017)。
文摘The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm.
基金Project supported by the National Natural Science Foundation of China(Nos.12022213,12002329,U23A2066,12272240,and 12002217)。
文摘A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters.
基金supported in part by the National Nature Science Foundation of China(Nos.62173091,62073082)in part by the Natural Science Foundation of Fujian Province(No.2023J01268)in part by the Taishan Scholar Program of Shandong Province.
文摘Separable nonlinear models are widely used in various fields such as time series analysis, system modeling, and machine learning, due to their flexible structures and ability to capture nonlinear behavior of data. However, identifying the parameters of these models is challenging, especially when sparse models with better interpretability are desired by practitioners. Previous theoretical and practical studies have shown that variable projection (VP) is an efficient method for identifying separable nonlinear models, but these are based on \(L_2\) penalty of model parameters, which cannot be directly extended to deal with sparse constraint. Based on the exploration of the structural characteristics of separable models, this paper proposes gradient-based and trust-region-based variable projection algorithms, which mainly solve two key problems: how to eliminate linear parameters under sparse constraint;and how to deal with the coupling relationship between linear and nonlinear parameters in the model. Finally, numerical experiments on synthetic data and real time series data are conducted to verify the effectiveness of the proposed algorithms.
文摘Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions.
文摘针对电动汽车无线充电系统在变电压间歇快速充电过程中由原副边线圈偏移和负载波动引起充电电压不稳定的问题,以及控制器参数大多依靠经验值和试凑法选取的问题,提出一种基于粒子群优化算法的无源控制器(passivity based controller,PBC)与非线性干扰观测器(nonlinear disturbance observer,NDO)相结合的复合控制策略。针对无线电能传输(wireless power transfer,WPT)系统副边DC-DC变换器设计考虑干扰补偿的无源控制器,通过引入非线性干扰观测器对干扰量进行估计,将干扰估计值与无源控制器结合,设计适合电动汽车变电压间歇无线充电系统的PBC-NDO复合控制器,采用粒子群多目标优化算法对复合控制器进行参数寻优,进一步提高控制器的抗干扰性能以及动态响应性能,通过仿真和实验验证该策略的有效性。实验结果表明:复合控制器具有强抗干扰性和动态响应性,充电阶段最大稳态误差偏移率为2%,动态响应时间控制在0.6 ms内。