Lanthanide-doped photon-avalanche(PA)upconversion(UC)nanoparticles(NPs),characterized by highly nonlinear optical response,have recently attracted tremendous interest for applications in many frontier areas such as su...Lanthanide-doped photon-avalanche(PA)upconversion(UC)nanoparticles(NPs),characterized by highly nonlinear optical response,have recently attracted tremendous interest for applications in many frontier areas such as super-resolution imaging[1],dynamic photoswitching[2],ultrasensitive optical sensing[3],and high-density optical memory and computing[4].Specifically,the large nonlinearities(N)of PA have fueled the development of low-cost,single-beam super-resolution imaging techniques,offering a√N-fold improvement in spatial resolution[5].Although PA NPs with N plateauing 60s have been developed through energy transfer engineering based on core/shell architecture[6],further enhancement remains challenging.展开更多
In this paper,we investigate the following fractional Schrödinger-Poisson system with concave-convex nonlinearities and a steep potential well{(-Δ)^(s)u+V_(λ)(x)u+ϕu=f(x)|u|^(q-2)u+|u|^(p-2)u,in R^(3),(-Δ)^(t)...In this paper,we investigate the following fractional Schrödinger-Poisson system with concave-convex nonlinearities and a steep potential well{(-Δ)^(s)u+V_(λ)(x)u+ϕu=f(x)|u|^(q-2)u+|u|^(p-2)u,in R^(3),(-Δ)^(t)ϕ=u^(2),in R^(3),where s∈(3/4,1),t∈(0,1),q∈(1,2),p∈(4,2_(s)^(*)),2_(s)^(*):=6/3-2s is the fractional critical exponent in dimension 3,V_(λ)(x)=λV(x)+1 withλ>0.Under the case of steep potential well,we obtain the existence of the sign-changing solutions for the above system by using the constraint variational method and the quantitative deformation lemma.Furthermore,we prove that the energy of ground state sign-changing solution is strictly more than twice of the energy of the ground state solution.Our results improve the recent results in the literature.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and e...The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.展开更多
In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the...In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the recommended density function by introducing a fifth-degree cubature Kalman filter algorithm to guide particle sampling,which effectively alleviates the problem of particle degradation and significantly improves the estimation accuracy of the filter.However,the 5CPF algorithm exhibits high computational complexity,particularly in scenarios with a large number of particles.Therefore,we propose the extended Kalman filter(EKF)-5CPF algorithm,which employs an EKF to replace the time update step for each particle in the 5CPF.This enhances the algorithm’s real-time capability while maintaining the high precision advantage of the 5CPF algorithm.In addition,we construct bearing-only dual-station and single-motion station target tracking systems,and the filtering performances of 5CPF and EKF-5CPF algorithms under different conditions are analyzed.The results show that both the 5CPF algorithm and EKF-5CPF have strong robustness and can adapt to different noise environments.Furthermore,both algorithms significantly outperform traditional nonlinear filtering algorithms in terms of convergence speed,tracking accuracy,and overall stability.展开更多
The flutter characteristics of folding control fins with freeplay are investigated by numer- ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay ...The flutter characteristics of folding control fins with freeplay are investigated by numer- ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroe- lastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.展开更多
In this paper,a framework is established for nonlinear flutter and gust response analyses based on an efficient Reduced Order Model(ROM).The proposed method can be used to solve the aeroelastic response problems of wi...In this paper,a framework is established for nonlinear flutter and gust response analyses based on an efficient Reduced Order Model(ROM).The proposed method can be used to solve the aeroelastic response problems of wings containing geometric nonlinearities.A structural modeling approach presented herein describes the stiffness nonlinearities with a modal formulation.Two orthogonal spanwise modes describe the foreshortening effects of the wing.Dynamic linearization of the ROM under nonlinear equilibrium states is applied to a nonlinear flutter analysis,and the fully nonlinear ROM coupled with the non-planar Unsteady Vortex Lattice Method(UVLM)is applied to gust response analysis.Furthermore,extended Precise Integration Method(PIM)ensures accuracy of the dynamic equation solutions.To demonstrate applicability and accuracy of the method presented,a wind tunnel test is conducted and good agreements between theoretical and test results of nonlinear flutter speed and gust response deflection are reached.The method described in this paper is suitable for predicting the nonlinear flutter speed and calculating the gust responses of a large-aspect-ratio wing in time domain.Meanwhile,the results derived highlight the effects of geometric nonlinearities obviously.展开更多
A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of i...A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs) are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.展开更多
基金the National Natural Science Foundation of China(Nos.12474418,U22A20398,22135008)the Natural Science Foundation of Fujian Province(No.2024J010038).
文摘Lanthanide-doped photon-avalanche(PA)upconversion(UC)nanoparticles(NPs),characterized by highly nonlinear optical response,have recently attracted tremendous interest for applications in many frontier areas such as super-resolution imaging[1],dynamic photoswitching[2],ultrasensitive optical sensing[3],and high-density optical memory and computing[4].Specifically,the large nonlinearities(N)of PA have fueled the development of low-cost,single-beam super-resolution imaging techniques,offering a√N-fold improvement in spatial resolution[5].Although PA NPs with N plateauing 60s have been developed through energy transfer engineering based on core/shell architecture[6],further enhancement remains challenging.
基金supported by the Natural Science Foundation of Sichuan(No.2023NSFSC0073)。
文摘In this paper,we investigate the following fractional Schrödinger-Poisson system with concave-convex nonlinearities and a steep potential well{(-Δ)^(s)u+V_(λ)(x)u+ϕu=f(x)|u|^(q-2)u+|u|^(p-2)u,in R^(3),(-Δ)^(t)ϕ=u^(2),in R^(3),where s∈(3/4,1),t∈(0,1),q∈(1,2),p∈(4,2_(s)^(*)),2_(s)^(*):=6/3-2s is the fractional critical exponent in dimension 3,V_(λ)(x)=λV(x)+1 withλ>0.Under the case of steep potential well,we obtain the existence of the sign-changing solutions for the above system by using the constraint variational method and the quantitative deformation lemma.Furthermore,we prove that the energy of ground state sign-changing solution is strictly more than twice of the energy of the ground state solution.Our results improve the recent results in the literature.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11961059,1210502)the University Innovation Project of Gansu Province(Grant No.2023B-062)the Gansu Province Basic Research Innovation Group Project(Grant No.23JRRA684).
文摘The goal of this paper is to investigate the long-time dynamics of solutions to a Kirchhoff type suspension bridge equation with nonlinear damping and memory term.For this problem we establish the well-posedness and existence of uniform attractor under some suitable assumptions on the nonlinear term g(u),the nonlinear damping f(u_(t))and the external force h(x,t).Specifically,the asymptotic compactness of the semigroup is verified by the energy reconstruction method.
基金Supported by the Guangxi Special Program for Technological Innovation Guidance(No.GuiKeAC25069006).
文摘In this study,a fifth-degree cubature particle filter(5CPF)is proposed to address the limited estimation accuracy in traditional particle filter algorithms for bearings-only tracking(BOT).This algorithm calculates the recommended density function by introducing a fifth-degree cubature Kalman filter algorithm to guide particle sampling,which effectively alleviates the problem of particle degradation and significantly improves the estimation accuracy of the filter.However,the 5CPF algorithm exhibits high computational complexity,particularly in scenarios with a large number of particles.Therefore,we propose the extended Kalman filter(EKF)-5CPF algorithm,which employs an EKF to replace the time update step for each particle in the 5CPF.This enhances the algorithm’s real-time capability while maintaining the high precision advantage of the 5CPF algorithm.In addition,we construct bearing-only dual-station and single-motion station target tracking systems,and the filtering performances of 5CPF and EKF-5CPF algorithms under different conditions are analyzed.The results show that both the 5CPF algorithm and EKF-5CPF have strong robustness and can adapt to different noise environments.Furthermore,both algorithms significantly outperform traditional nonlinear filtering algorithms in terms of convergence speed,tracking accuracy,and overall stability.
文摘The flutter characteristics of folding control fins with freeplay are investigated by numer- ical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroe- lastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.
基金supported by the National Key Research and Development Program of China(No.2016YFB 0200703).
文摘In this paper,a framework is established for nonlinear flutter and gust response analyses based on an efficient Reduced Order Model(ROM).The proposed method can be used to solve the aeroelastic response problems of wings containing geometric nonlinearities.A structural modeling approach presented herein describes the stiffness nonlinearities with a modal formulation.Two orthogonal spanwise modes describe the foreshortening effects of the wing.Dynamic linearization of the ROM under nonlinear equilibrium states is applied to a nonlinear flutter analysis,and the fully nonlinear ROM coupled with the non-planar Unsteady Vortex Lattice Method(UVLM)is applied to gust response analysis.Furthermore,extended Precise Integration Method(PIM)ensures accuracy of the dynamic equation solutions.To demonstrate applicability and accuracy of the method presented,a wind tunnel test is conducted and good agreements between theoretical and test results of nonlinear flutter speed and gust response deflection are reached.The method described in this paper is suitable for predicting the nonlinear flutter speed and calculating the gust responses of a large-aspect-ratio wing in time domain.Meanwhile,the results derived highlight the effects of geometric nonlinearities obviously.
基金supported by the National Natural Science Foundation of China(Nos.61473307 and 61304120)the Aeronautical Science Foundation of China(No. 20155896026)
文摘A constrained adaptive neural network control scheme is proposed for a multi-input and multi-output(MIMO) aeroelastic system in the presence of wind gust,system uncertainties,and input nonlinearities consisting of input saturation and dead-zone.In regard to the input nonlinearities,the right inverse function block of the dead-zone is added before the input nonlinearities,which simplifies the input nonlinearities into an equivalent input saturation.To deal with the equivalent input saturation,an auxiliary error system is designed to compensate for the impact of the input saturation.Meanwhile,uncertainties in pitch stiffness,plunge stiffness,and pitch damping are all considered,and radial basis function neural networks(RBFNNs) are applied to approximate the system uncertainties.In combination with the designed auxiliary error system and the backstepping control technique,a constrained adaptive neural network controller is designed,and it is proven that all the signals in the closed-loop system are semi-globally uniformly bounded via the Lyapunov stability analysis method.Finally,extensive digital simulation results demonstrate the effectiveness of the proposed control scheme towards flutter suppression in spite of the integrated effects of wind gust,system uncertainties,and input nonlinearities.