In a coherent system, enhanced nonlinearity can be reached via far-detuned coupling fields in the presence of Autler–Townes splitting. We explore the absorption spectra and the Kerr nonlinearity of the coherent syste...In a coherent system, enhanced nonlinearity can be reached via far-detuned coupling fields in the presence of Autler–Townes splitting. We explore the absorption spectra and the Kerr nonlinearity of the coherent system via the interaction between a four-level atomic system and triple fields. We obtain the absorption spectra with double, triple and even quadruple peaks which depend on both the magnitude and the difference of the coupling fields. The Kerr nonlinearity always remains reversely correlated with the absorption spectra. We find that the large coupling detunings can lead to a significant growth of the Kerr nonlinearity and the degenerate four-wave mixing. Both the Kerr nonlinearity and the four-wave mixing can be managed by adjusting the detunings of the coupling fields.展开更多
This paper presents a modified rate-independent Prandtl-Ishlinskii (MRIPI) model based on the Fermi-Dirac distri- bution for the asymmetric hysteresis description of magnetostrictive actuators. Generally, the classi...This paper presents a modified rate-independent Prandtl-Ishlinskii (MRIPI) model based on the Fermi-Dirac distri- bution for the asymmetric hysteresis description of magnetostrictive actuators. Generally, the classical Prandtl-Ishlinskii (CPI) model can hardly describe the asymmetric hysteresis. To overcome this limitation, various complex operators have been developed to replace the classical operator. In this study, the proposed MRIPI model maintains the classical operator while a modified input function based on the Fermi-Dirac distribution is presented to replace the classical input function. With this method, the MRIPI model can describe the asymmetric hysteresis of magnetostrictive actuators in a relatively simple mathematic format and has fewer parameters to be identified. A velocity-based sine cosine algorithm (VSCA) is also proposed for the parameter identification of the MRIPI model. To verify the validity of the MRIPI model, experiments are performed and the results are compared with those of the existing modeling methods.展开更多
In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
基金Project supported by the Open Subject of the State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF202209)。
文摘In a coherent system, enhanced nonlinearity can be reached via far-detuned coupling fields in the presence of Autler–Townes splitting. We explore the absorption spectra and the Kerr nonlinearity of the coherent system via the interaction between a four-level atomic system and triple fields. We obtain the absorption spectra with double, triple and even quadruple peaks which depend on both the magnitude and the difference of the coupling fields. The Kerr nonlinearity always remains reversely correlated with the absorption spectra. We find that the large coupling detunings can lead to a significant growth of the Kerr nonlinearity and the degenerate four-wave mixing. Both the Kerr nonlinearity and the four-wave mixing can be managed by adjusting the detunings of the coupling fields.
文摘This paper presents a modified rate-independent Prandtl-Ishlinskii (MRIPI) model based on the Fermi-Dirac distri- bution for the asymmetric hysteresis description of magnetostrictive actuators. Generally, the classical Prandtl-Ishlinskii (CPI) model can hardly describe the asymmetric hysteresis. To overcome this limitation, various complex operators have been developed to replace the classical operator. In this study, the proposed MRIPI model maintains the classical operator while a modified input function based on the Fermi-Dirac distribution is presented to replace the classical input function. With this method, the MRIPI model can describe the asymmetric hysteresis of magnetostrictive actuators in a relatively simple mathematic format and has fewer parameters to be identified. A velocity-based sine cosine algorithm (VSCA) is also proposed for the parameter identification of the MRIPI model. To verify the validity of the MRIPI model, experiments are performed and the results are compared with those of the existing modeling methods.
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.