In this paper,we introduce a new averaging rule,the nonlinear weighted averaging rule.As an application,this averaging rule is used to replace the midpoint averaging in the de Casteljau evaluation algorithm and with t...In this paper,we introduce a new averaging rule,the nonlinear weighted averaging rule.As an application,this averaging rule is used to replace the midpoint averaging in the de Casteljau evaluation algorithm and with this scheme we can also generate transcendental functions which cannot be generated by the classical de Casteljau algorithm.We also investigate the properties of the curves of the functions generated by blossoming,where the results show that these curves and the classical Bézier curves have some similar properties,including variation diminishing property and endpoint interpolation.However,the curves obtained by blossoming using nonlinear weighted averaging rules induced by certain functions violate some properties like convex hull property.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal...To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.展开更多
In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded be...In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded below: One is $${u_t} = {\Delta _f}u + au\log u + bu$$ with a, b two real constants, and another is $${u_t} = {\Delta _f}u + \lambda {u^\alpha }$$ with λ, α two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f.展开更多
We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonli...We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.展开更多
Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of el...Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of electromagnetic losses,flux leakage or saturation of iron.In this paper,based on results from an experimental set-up designed to study magnetic force,a novel parametric model is presented in the form of a nonlinear polynomial with unknown coefficients.The parameters of the proposed model are identified using the weighted residual method.Validations of the model identified were performed by comparing the results in time and frequency domains.The results show a good correlation between experiments and numerical simulations.展开更多
Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governi...Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governing equation of 1D nonlinear consolidation was modified by considering both uniform distribution of self-weight stress and linear increment of self-weight stress. The numerical solutions for the governing equation were derived by the finite difference method (FDM). Moreover, the solutions were verified by comparing the numerical results with those by analytical method under a specific case. Finally, consolidation behavior under different parameters was investigated, and the results show that the rate of 1D nonlinear consolidation will slow down when the non-Darcian flow law is considered. The consolidation rate with linear increment of self-weight stress is faster than that with uniform distribution one. Compared to Darcy's flow law, the influence of parameters describing non-linearity of soft soil on consolidation behavior with non-Darcian flow has no significant change.展开更多
文摘In this paper,we introduce a new averaging rule,the nonlinear weighted averaging rule.As an application,this averaging rule is used to replace the midpoint averaging in the de Casteljau evaluation algorithm and with this scheme we can also generate transcendental functions which cannot be generated by the classical de Casteljau algorithm.We also investigate the properties of the curves of the functions generated by blossoming,where the results show that these curves and the classical Bézier curves have some similar properties,including variation diminishing property and endpoint interpolation.However,the curves obtained by blossoming using nonlinear weighted averaging rules induced by certain functions violate some properties like convex hull property.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
基金Project supported by the National Key Project(No.GJXM92579)the Defense Industrial Technology Development Program(No.C1520110002)the State Administration of Science,Technology and Industry for National Defence,China。
文摘To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.
文摘In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded below: One is $${u_t} = {\Delta _f}u + au\log u + bu$$ with a, b two real constants, and another is $${u_t} = {\Delta _f}u + \lambda {u^\alpha }$$ with λ, α two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f.
文摘We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.
文摘Conventional attractive magnetic force models (proportional to the coil current squared and inversely proportional to the gap squared) cannot simulate the nonlinear responses of magnetic bearings in the presence of electromagnetic losses,flux leakage or saturation of iron.In this paper,based on results from an experimental set-up designed to study magnetic force,a novel parametric model is presented in the form of a nonlinear polynomial with unknown coefficients.The parameters of the proposed model are identified using the weighted residual method.Validations of the model identified were performed by comparing the results in time and frequency domains.The results show a good correlation between experiments and numerical simulations.
基金Supported by National Natural Science Foundation of China (60874024, 90816028) and the Specialized Research and for the Doctoral Program of Higher Education of China (200801450019)
基金Project supported by the National Natural Science Foundation of China (No. 51109092)the National Science Foundation for Post-doctoral Scientists of China (No. 2013M530237)the Jiangsu University Foundation for Advanced Talents (No. 12JDG098), China
文摘Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governing equation of 1D nonlinear consolidation was modified by considering both uniform distribution of self-weight stress and linear increment of self-weight stress. The numerical solutions for the governing equation were derived by the finite difference method (FDM). Moreover, the solutions were verified by comparing the numerical results with those by analytical method under a specific case. Finally, consolidation behavior under different parameters was investigated, and the results show that the rate of 1D nonlinear consolidation will slow down when the non-Darcian flow law is considered. The consolidation rate with linear increment of self-weight stress is faster than that with uniform distribution one. Compared to Darcy's flow law, the influence of parameters describing non-linearity of soft soil on consolidation behavior with non-Darcian flow has no significant change.