In this paper,a linearized energy-stable scalar auxiliary variable(SAV)Galerkin scheme is investigated for a two-dimensional nonlinear wave equation and the unconditional superconvergence error estimates are obtained ...In this paper,a linearized energy-stable scalar auxiliary variable(SAV)Galerkin scheme is investigated for a two-dimensional nonlinear wave equation and the unconditional superconvergence error estimates are obtained without any certain time-step restrictions.The key to the analysis is to derive the boundedness of the numerical solution in theH^(1)-norm,which is different from the temporal-spatial error splitting approach used in the previous literature.Meanwhile,numerical results are provided to confirm the theoretical findings.展开更多
The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained...The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained and exact separable solutions to some of the resulting equations are constructed.展开更多
This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows...This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L^∞ norms, it analyzes the relative errors in approximate solutions.展开更多
Conservation laws for a class of variable coefficient nonlinear wave equations with power nonlinearities are investigated. The usual equivalence group and the generalized extended one including transformations which a...Conservation laws for a class of variable coefficient nonlinear wave equations with power nonlinearities are investigated. The usual equivalence group and the generalized extended one including transformations which are nonlocal with respect to arbitrary elements are introduced. Then, using the most direct method, we carry out a classification of local conservation laws with characteristics of zero order for the equation under consideration up to equivalence relations generated by the generalized extended equivalence group. The equivalence with respect to this group and the correct choice of gauge coefficients of the equations play the major roles for simple and clear formulation of the final results.展开更多
Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimen...Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.展开更多
The authors consider the Cauchy problem for the following nonlinear wave equationswhere x ∈ R3, t ≥ 0, ε > 0 is a small parameter, and obtain the sharp bounds for the lifespan of solution to (0.1). Specially, it...The authors consider the Cauchy problem for the following nonlinear wave equationswhere x ∈ R3, t ≥ 0, ε > 0 is a small parameter, and obtain the sharp bounds for the lifespan of solution to (0.1). Specially, it is proved that there exist two constants C1 and C2, which are independent of ε, then the lifespan T(ε) satisfies the folowing inequalities展开更多
The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time peri...The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray_Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.展开更多
This paper studied spherical pulses of solutions of the system of semilinear wav e equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms...This paper studied spherical pulses of solutions of the system of semilinear wav e equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms of pulses, when the ini tial data is subcritical.展开更多
From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that ...From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.展开更多
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n...Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.展开更多
The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions a...The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support.展开更多
The paper concerns with the existence, uniqueness and nonexistence of global solution to the Cauchy problem for a class of nonlinear wave equations with damping term. It proves that under suitable assumptions on nonli...The paper concerns with the existence, uniqueness and nonexistence of global solution to the Cauchy problem for a class of nonlinear wave equations with damping term. It proves that under suitable assumptions on nonlinear the function and initial data the abovementioned problem admits a unique global solution by Fourier transform method. The sufficient conditions of nonexistence of the global solution to the above-mentioned problem are given by the concavity method.展开更多
The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is ...The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is modified at its second step by avoiding transforming the wave height function into a frequency domain function. Thus, the periodic boundary condition is not required, and the new method is easy to implement. In order to validate its performance, the proposed method was used to solve the nonlinear parabolic mild-slope equation and the spatial modified nonlinear Schrodinger (MNLS) equation, which were used to model the wave propagation under different bathymetric conditions. Good agreement between the numerical and experimental results shows that the present method is effective and efficient in solving nonlinear wave eouations.展开更多
In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractio...In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.展开更多
Four types of similarity reductions are obtained for the nonlinear wave equation arising in the elasto-plasticmicrostructure model by using both the direct method due to Clarkson and Kruskal and the improved direct me...Four types of similarity reductions are obtained for the nonlinear wave equation arising in the elasto-plasticmicrostructure model by using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou. As a result, the nonlinear wave equation is not integrable.展开更多
The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined an...The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined and the corresponding reduced forms are obtained. The result of the work is shown in table form.展开更多
A class of strongly damped nonlinear wave equations are studied by using the technique of the operator decomposition,and the existence of the global compact attractor in space D(A)×V is obtained.
Dynamical analysis has revealed that, for some nonlinear wave equations, loop- and inverted loop-soliton solutions are actually visual artifacts. The so-called loopsoliton solution consists of three solutions, and is ...Dynamical analysis has revealed that, for some nonlinear wave equations, loop- and inverted loop-soliton solutions are actually visual artifacts. The so-called loopsoliton solution consists of three solutions, and is not a real solution. This paper answers the question as to whether or not nonlinear wave equations exist for which a "real" loopsolution exists, and if so, what are the precise parametric representations of these loop traveling wave solutions.展开更多
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this articl...The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.展开更多
This paper investigated the asymptotic behavior of global weak solutions of the initial boundary value problem for a class of nonlinear wave equations. Moreover, blowup of this kind of equations was also disscussed.
基金supported by the National Natural Science Foundation of China(No.12101568).
文摘In this paper,a linearized energy-stable scalar auxiliary variable(SAV)Galerkin scheme is investigated for a two-dimensional nonlinear wave equation and the unconditional superconvergence error estimates are obtained without any certain time-step restrictions.The key to the analysis is to derive the boundedness of the numerical solution in theH^(1)-norm,which is different from the temporal-spatial error splitting approach used in the previous literature.Meanwhile,numerical results are provided to confirm the theoretical findings.
文摘The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained and exact separable solutions to some of the resulting equations are constructed.
基金The study is supported by National Natural Science Foundation of China (10131050)the Educational Ministry of Chinathe Shanghai Science and Technology Committee foundation (03QMH1407)
文摘This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L^∞ norms, it analyzes the relative errors in approximate solutions.
基金Project supported by the National Key Basic Research Program of China (Grant No.2010CB126600)the National Natural Science Foundation of China (Grant No.60873070)+3 种基金the Shanghai Leading Academic Discipline Project,China (Grant No.B114)the Postdoctoral Science Foundation of China (Grant No.20090450067)the Shanghai Postdoctoral Sustentation Foundation,China (Grant No.09R21410600)the Fundamental Research Funds for the Central Universities,China (Grant No.WM0911004)
文摘Conservation laws for a class of variable coefficient nonlinear wave equations with power nonlinearities are investigated. The usual equivalence group and the generalized extended one including transformations which are nonlocal with respect to arbitrary elements are introduced. Then, using the most direct method, we carry out a classification of local conservation laws with characteristics of zero order for the equation under consideration up to equivalence relations generated by the generalized extended equivalence group. The equivalence with respect to this group and the correct choice of gauge coefficients of the equations play the major roles for simple and clear formulation of the final results.
基金Supported by the National Key Basic Research Project of China under Grant No.2010CB126600the National Natural Science Foundation of China under Grant No.60873070+2 种基金Shanghai Leading Academic Discipline Project No.B114the Postdoctoral Science Foundation of China under Grant No.20090450067Shanghai Postdoctoral Science Foundation under Grant No.09R21410600
文摘Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.
基金This work was supported by South-West Jiaotong University Foundation
文摘The authors consider the Cauchy problem for the following nonlinear wave equationswhere x ∈ R3, t ≥ 0, ε > 0 is a small parameter, and obtain the sharp bounds for the lifespan of solution to (0.1). Specially, it is proved that there exist two constants C1 and C2, which are independent of ε, then the lifespan T(ε) satisfies the folowing inequalities
文摘The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray_Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.
基金National Natural Science Foundation ofChina(No.10131050) Educational Min-istry of China and Shanghai Science andTehchnology Committee Foundation(No.03QMH1407)
文摘This paper studied spherical pulses of solutions of the system of semilinear wav e equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms of pulses, when the ini tial data is subcritical.
文摘From the nonlinear sine-Gordon equation, new transformations are obtained in this paper, which are applied to propose a new approach to construct exact periodic solutions to nonlinear wave equations. It is shown that more new periodic solutions can be obtained by this new approach, and more shock wave solutions or solitary wave solutions can be got under their limit conditions.
文摘Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.
基金The National Natural Science Foundation of China(No.10771032)
文摘The Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│)-1 and a nonlinearity │u│p-1u is studied.The total energy decay estimates of the global solutions are obtained by using multiplier techniques to establish identity ddtE(t)+F(t)=0 and skillfully selecting f(t),g(t),h(t)when the initial data have a compact support.Using the similar method,the Cauchy problem for the nonlinear wave equation with a critical potential type of damping coefficient(1+│x│+t)-1 and a nonlinearity │u│p-1u is studied,similar solutions are obtained when the initial data have a compact support.
基金Supported by the National Natural Science Foundation of China(10371073)
文摘The paper concerns with the existence, uniqueness and nonexistence of global solution to the Cauchy problem for a class of nonlinear wave equations with damping term. It proves that under suitable assumptions on nonlinear the function and initial data the abovementioned problem admits a unique global solution by Fourier transform method. The sufficient conditions of nonexistence of the global solution to the above-mentioned problem are given by the concavity method.
基金supported by the Central Public-Interest Scientific Institution Basal Research Fund of China(Grant No.TKS100108)
文摘The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is modified at its second step by avoiding transforming the wave height function into a frequency domain function. Thus, the periodic boundary condition is not required, and the new method is easy to implement. In order to validate its performance, the proposed method was used to solve the nonlinear parabolic mild-slope equation and the spatial modified nonlinear Schrodinger (MNLS) equation, which were used to model the wave propagation under different bathymetric conditions. Good agreement between the numerical and experimental results shows that the present method is effective and efficient in solving nonlinear wave eouations.
基金supported by the National Natural Science Foundation of China (No. 10671182)
文摘In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.
文摘Four types of similarity reductions are obtained for the nonlinear wave equation arising in the elasto-plasticmicrostructure model by using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou. As a result, the nonlinear wave equation is not integrable.
基金Supported by NSF-China Grant 10671156NSF of Shaanxi Province of China (SJ08A05) NWU Graduate Innovation and Creativity Funds under Grant No.09YZZ56
文摘The group classification is carried out on the nonlinear wave equation utt = f(x,u, ux)uzz + g(x,u,uz) by using the preliminary group classification approach. The generators of equivalence group are determined and the corresponding reduced forms are obtained. The result of the work is shown in table form.
文摘A class of strongly damped nonlinear wave equations are studied by using the technique of the operator decomposition,and the existence of the global compact attractor in space D(A)×V is obtained.
基金supported by the National Natural Science Foundation of China (Nos.10671179 and 10831003)
文摘Dynamical analysis has revealed that, for some nonlinear wave equations, loop- and inverted loop-soliton solutions are actually visual artifacts. The so-called loopsoliton solution consists of three solutions, and is not a real solution. This paper answers the question as to whether or not nonlinear wave equations exist for which a "real" loopsolution exists, and if so, what are the precise parametric representations of these loop traveling wave solutions.
文摘The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.
基金National Natural Science Foundation ofChina( No. 10 3 710 73 ) and Natural Science Foundation of HenanProvince( No.0 2 110 10 90 0 )
文摘This paper investigated the asymptotic behavior of global weak solutions of the initial boundary value problem for a class of nonlinear wave equations. Moreover, blowup of this kind of equations was also disscussed.