The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC...The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model. This paper first simply analyzes the necessity of the PEMFC generation technology, then introduces the generating principle from four aspects: electrode, single cell, stack, system; and then uses the approach and self-study ability of artificial neural network to build the model of nonlinear system, and adapts the Leven- berg-Marquardt BP (LMBP) to build the electric characteristic model of PEMFC. The model uses experimental data as training specimens, on the condition the system is provided enough hydrogen. Considering the flow velocity of air (or oxygen) and the cell operational temperature as inputs, the cell voltage and current density as the outputs and establishing the electric characteristic model of PEMFC according to the different cell temperatures. The voltage-current output curves of model has some guidance effect for improving the cell performance, and provide basic data for optimizing cell performance that have practical significance.展开更多
Dear Editor,This letter presents a new secure hierarchical control strategy for steering tracking of in-wheel motor driven(IWMD)electric vehicle(EV)subject to limited network resources,hybrid cyber-attacks,model nonli...Dear Editor,This letter presents a new secure hierarchical control strategy for steering tracking of in-wheel motor driven(IWMD)electric vehicle(EV)subject to limited network resources,hybrid cyber-attacks,model nonlinearities,actuator redundancy and airflow disturbance.A hierarchical control architecture is proposed specifically for solving the problems of nonlinear system modeling and actuator redundancy.By utilizing the advantages of fully actuated system(FAS)approach,a nonlinear virtual controller against airflow disturbance is constructed in upper layer system and an event-triggered nonlinear distributed controller is proposed in lower layer system under stochastic hybrid cyber-attacks.A case study of overtaking task is carried out to validate the FAS-based hierarchical control strategy.展开更多
基金Project (No. 2002AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful “green” power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model. This paper first simply analyzes the necessity of the PEMFC generation technology, then introduces the generating principle from four aspects: electrode, single cell, stack, system; and then uses the approach and self-study ability of artificial neural network to build the model of nonlinear system, and adapts the Leven- berg-Marquardt BP (LMBP) to build the electric characteristic model of PEMFC. The model uses experimental data as training specimens, on the condition the system is provided enough hydrogen. Considering the flow velocity of air (or oxygen) and the cell operational temperature as inputs, the cell voltage and current density as the outputs and establishing the electric characteristic model of PEMFC according to the different cell temperatures. The voltage-current output curves of model has some guidance effect for improving the cell performance, and provide basic data for optimizing cell performance that have practical significance.
基金supported by the National Natural Science Foundation of China(62173209,61773238)the Science Center Program of National Natural Science Foundation of China(62188101).
文摘Dear Editor,This letter presents a new secure hierarchical control strategy for steering tracking of in-wheel motor driven(IWMD)electric vehicle(EV)subject to limited network resources,hybrid cyber-attacks,model nonlinearities,actuator redundancy and airflow disturbance.A hierarchical control architecture is proposed specifically for solving the problems of nonlinear system modeling and actuator redundancy.By utilizing the advantages of fully actuated system(FAS)approach,a nonlinear virtual controller against airflow disturbance is constructed in upper layer system and an event-triggered nonlinear distributed controller is proposed in lower layer system under stochastic hybrid cyber-attacks.A case study of overtaking task is carried out to validate the FAS-based hierarchical control strategy.