To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) co...To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.展开更多
An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes...An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.展开更多
This paper proposes a parameterized nonlinear model-based predictive control (NMPC) strategy to tackle the oxygen excess ratio regulation challenge of a proton exchange membrane fuel cell. In practice, the most challe...This paper proposes a parameterized nonlinear model-based predictive control (NMPC) strategy to tackle the oxygen excess ratio regulation challenge of a proton exchange membrane fuel cell. In practice, the most challenging part regarding NMPC strategies remains the on-line implementation. In fact, NMPC strategies, at least in their basic form, involve heavy computation to solve the optimization problem. In this work, a specific parameterization of control actions has been designed to address this limitation and achieve on-line implementation. To assess the effectiveness and relevance of the proposed strategy, the controller has been implemented on-line, experimentally validated on a real fuel cell and compared to the built-in controller. Performance of the parameterized NMPC controller in terms of setpoint tracking accuracy, disturbances rejection and computational cost, have tested under several control scenarios. Experimental results have shown the excellent tracking capability, disturbances rejection ability and low computational cost of the NMPC controller, regardless of the operating conditions. Moreover, compared to the built-in controller the proposed strategy has demonstrated better disturbances rejection capability. Overall, the proposed parameterized NMPC controller appears as an excellent candidate to address the oxygen excess ratio regulation issue.展开更多
Magneto-rheological visco-elastomer (MRVE) as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random env...Magneto-rheological visco-elastomer (MRVE) as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random environmental excitations is required in vibration control. MRVE can supply considerably adjustable damping and stiffness for structures, and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design. Increasing researches on MRVE dy- namic properties, modeling, and vibration control application are presented. Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields, vibration response characteristics improvement through harmonic parameter distribution, and optimal bounded parametric control design based on the dynamical programming principle are reviewed. Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.展开更多
文摘To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.
基金supported by the National Natural Science Foundation of China (61203041)the Chinese National Post-doctor Science Foundation (2011M500217)
文摘An adaptive repetitive control scheme is presented for a class of nonlinearly parameterized systems based on the fuzzy basis function network (FBFN). The parameters of the fuzzy rules are tuned with adaptive schemes. To attenuate chattering effectively, the discontinuous control term is approximated by an adaptive PI control structure. The bound of the discontinuous control term is assumed to be unknown and estimated by an adaptive mechanism. Based on the Lyapunov stability theory, an adaptive repetitive control law is proposed to guarantee the closed-loop stability and the tracking performance. By means of FBFNs, which avoid the nonlinear parameterization from entering into the adaptive repetitive control, the controller singularity problem is solved. The proposed approach does not require an exact structure of the system dynamics, and the proposed controller is utilized to control a model of permanent-magnet linear synchronous motor subject to significant disturbances and parameter uncertainties. The simulation results demonstrate the effectiveness of the proposed method.
文摘This paper proposes a parameterized nonlinear model-based predictive control (NMPC) strategy to tackle the oxygen excess ratio regulation challenge of a proton exchange membrane fuel cell. In practice, the most challenging part regarding NMPC strategies remains the on-line implementation. In fact, NMPC strategies, at least in their basic form, involve heavy computation to solve the optimization problem. In this work, a specific parameterization of control actions has been designed to address this limitation and achieve on-line implementation. To assess the effectiveness and relevance of the proposed strategy, the controller has been implemented on-line, experimentally validated on a real fuel cell and compared to the built-in controller. Performance of the parameterized NMPC controller in terms of setpoint tracking accuracy, disturbances rejection and computational cost, have tested under several control scenarios. Experimental results have shown the excellent tracking capability, disturbances rejection ability and low computational cost of the NMPC controller, regardless of the operating conditions. Moreover, compared to the built-in controller the proposed strategy has demonstrated better disturbances rejection capability. Overall, the proposed parameterized NMPC controller appears as an excellent candidate to address the oxygen excess ratio regulation issue.
基金supported by the National Natural Science Foundation of China(11572279,11432012,and U1234210)the Zhejiang Provincial Natural Science Foundation of China(LY15A020001)the Hong Kong Polytechnic University Fund(1-BBY5)
文摘Magneto-rheological visco-elastomer (MRVE) as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random environmental excitations is required in vibration control. MRVE can supply considerably adjustable damping and stiffness for structures, and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design. Increasing researches on MRVE dy- namic properties, modeling, and vibration control application are presented. Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields, vibration response characteristics improvement through harmonic parameter distribution, and optimal bounded parametric control design based on the dynamical programming principle are reviewed. Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.