In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibratio...In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibration isolation device to reduce excessive vibration of the whole-spacecraft isolation system.The AVS-VI is composed of horizontal stiffness spring,positive stiffness spring,parallelogram linkage mechanism,piezoelectric actuator,acceleration sensor,viscoelastic damping,and PID active controller.Based on the AVS-VI,the generalized vibration transmissibility determined by the nonlinear output frequency response functions and the energy absorption rate is applied to analyze the isolation performance of the whole-spacecraft system with AVS-VI.The AVS-VI can conduct adaptive vibration suppression with variable stiffness to the whole-spacecraft system,and the analysis results indicate that the AVS-VI is efTective in reducing the extravagant vibration of the whole-spacecraft system,where the vibration isolation is decreased up to above 65%under different acceleration excitations.Finally,different parameters of AVS-VI are considered to optimize the whole-spacecraft system based on the generalized vibration transmissibility and the energy absorption rate.展开更多
Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significa...Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.展开更多
A novel vibration isolation device called the nonlinear energy sink(NES)with NiTiNOL-steel wire ropes(NiTi-ST)is applied to a whole-spacecraft system.The NiTi-ST is used to describe the damping of the NES,which is cou...A novel vibration isolation device called the nonlinear energy sink(NES)with NiTiNOL-steel wire ropes(NiTi-ST)is applied to a whole-spacecraft system.The NiTi-ST is used to describe the damping of the NES,which is coupled with the modified Bouc-Wen model of hysteresis.The NES with NiTi-ST vibration reduction principle uses the irreversibility of targeted energy transfer(TET)to concentrate the energy locally on the nonlinear oscillator,and then dissipates it through damping in the NES with NiTi-ST.The generalized vibration transmissibility,obtained by the root mean square treatment of the harmonic response of the nonlinear output frequency response functions(NOFRFs),is first used as the evaluation index to analyze the whole-spacecraft system in the future.An optimization analysis of the impact of system responses is performed using different parameters of NES with NiTi-ST based on the transmissibility of NOFRFs.Finally,the effects of vibration suppression by varying the parameters of NiTi-ST are analyzed from the perspective of energy absorption.The results indicate that NES with NiTi-ST can reduce excessive vibration of the whole-spacecraft system,without changing its natural frequency.Moreover,the NES with NiTi-ST can be directly used in practical engineering applications.展开更多
In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first intro...In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded. Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.展开更多
The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, ...The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, which has been an intensive research subject since 1995. In this paper, we will further investigate the solvability of the robust disturbance rejection problem of the RTAC system by the measurement output feedback control based on the robust output regulation method. We have obtained a design by overcoming two major obstacles: find a closed-form solution of the regulator equations; and devise a nonlinear internal model to account for non-polynomial nonlinearities.展开更多
The output-feedback stabilization control problem is investigated for a class of nonlinear uncertain systems. Based on the multivariable analog of circle criterion, an observer is designed to estimate the system state...The output-feedback stabilization control problem is investigated for a class of nonlinear uncertain systems. Based on the multivariable analog of circle criterion, an observer is designed to estimate the system states and hence the dynamical equations that the estimation error satisfies are derived first. Then, by using integral backstepping approach together with completing square technique, the output-feedback stabilization control is constructively designed such that the closed-loop system is asymptotically stable. Finally, an example is given to illustrate the main results of this paper.展开更多
This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly kno...This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly known. Using a feedback domination design method, we explicitly construct a dynamic output compensator which globally stabilizes such an uncertain nonlinear system. The usefulness of our result is illustrated with an example.展开更多
This paper is concerned with the problem of global output feedback stabilization in probability for a class of switched stochastic nonlinear systems under arbitrary switchings. The subsystems are assumed to be in outp...This paper is concerned with the problem of global output feedback stabilization in probability for a class of switched stochastic nonlinear systems under arbitrary switchings. The subsystems are assumed to be in output feedback form and driven by white noise. By introducing a common Lyapunov function, the common output feedback controller independent of switching signals is constructed based on the backstepping approach. It is proved that the zero solution of the closed-loop system is fourth-moment exponentially stable. An example is given to show the effectiveness of the proposed method.展开更多
A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay....A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results, where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.展开更多
The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and ...The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and feedback controller. The stable inversion is implemented as a feedforward controller to improve the load-following capability, and the feedback controller is utilized to guarantee the stability and robustness of the whole system. Loop-shaping H∞ method is used to design the feedback controller and the final controller is reduced to a multivariable PI form. The output tracking control system takes account of the multivariable, nonlinear and coupling behavior of boiler-turbine system, and the simulation tests show that the control system works well and can be widely applied.展开更多
This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backsteppi...This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.展开更多
The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condi...The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condition than the existing triangulartype condition. Under the assumption that the input unmodeled dynamics is minimum-phase and of relative degree zero, a dynamic output compensator is explicitly constructed based on the nonseparation principle. An example illustrates the usefulness of the proposed method.展开更多
An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time de...An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme.展开更多
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to ...Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.展开更多
Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain l...Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain linear matrix equations are solvable. Once these equations are solvable, the state feedback regulator can easily be constructed.展开更多
This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis func...This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis function neural network approximation method and backstepping technique, we successfully construct a controller to guarantee the solution process to be bounded in probability.The tracking error signal is 4th-moment semi-globally uniformly ultimately bounded(SGUUB) and can be regulated into a small neighborhood of the origin in probability. A simulation example is given to demonstrate the effectiveness of the control scheme.展开更多
The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear...The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear continuous systems confined by a bound function, the nonlinearities of the systems may be of varied forms or uncertain; the designed stabilizer is robust means that a class of nonlinear continuous systems can be stabilized by the same output feedback stabilization schemes; numerical simulation examples are given.展开更多
For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assum...For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme.展开更多
基金the National Natural Science Foundation of China(Project Nos.12022213,11772205 and 11902203)the Scieatifie Research Fund of Liaoning Provineinl Education Department(No.L201703)+1 种基金the Program of Liaoning Revitalization Talents(XLYC1807172)the Tralning Project of Liaoning Higher Education Institutions in Domestic and Oveseas(Nos.2018LNGXGJWPY-YB008).
文摘In order to improve the harsh dynamic environment experienced by heavy rockets during different external excitations,this study presents a novel active variable stiffness vibration isolator(AVS-VI)used as the vibration isolation device to reduce excessive vibration of the whole-spacecraft isolation system.The AVS-VI is composed of horizontal stiffness spring,positive stiffness spring,parallelogram linkage mechanism,piezoelectric actuator,acceleration sensor,viscoelastic damping,and PID active controller.Based on the AVS-VI,the generalized vibration transmissibility determined by the nonlinear output frequency response functions and the energy absorption rate is applied to analyze the isolation performance of the whole-spacecraft system with AVS-VI.The AVS-VI can conduct adaptive vibration suppression with variable stiffness to the whole-spacecraft system,and the analysis results indicate that the AVS-VI is efTective in reducing the extravagant vibration of the whole-spacecraft system,where the vibration isolation is decreased up to above 65%under different acceleration excitations.Finally,different parameters of AVS-VI are considered to optimize the whole-spacecraft system based on the generalized vibration transmissibility and the energy absorption rate.
文摘Tool condition monitoring(TCM)is a key technology for intelligent manufacturing.The objective is to monitor the tool operation status and detect tool breakage so that the tool can be changed in time to avoid significant damage to workpieces and reduce manufacturing costs.Recently,an innovative TCM approach based on sensor data modelling and model frequency analysis has been proposed.Different from traditional signal feature-based monitoring,the data from sensors are utilized to build a dynamic process model.Then,the nonlinear output frequency response functions,a concept which extends the linear system frequency response function to the nonlinear case,over the frequency range of the tooth passing frequency of the machining process are extracted to reveal tool health conditions.In order to extend the novel sensor data modelling and model frequency analysis to unsupervised condition monitoring of cutting tools,in the present study,a multivariate control chart is proposed for TCM based on the frequency domain properties of machining processes derived from the innovative sensor data modelling and model frequency analysis.The feature dimension is reduced by principal component analysis first.Then the moving average strategy is exploited to generate monitoring variables and overcome the effects of noises.The milling experiments of titanium alloys are conducted to verify the effectiveness of the proposed approach in detecting excessive flank wear of solid carbide end mills.The results demonstrate the advantages of the new approach over conventional TCM techniques and its potential in industrial applications.
基金Project supported by the National Natural Science Foundation of China(No.11772205)the Scientific Research Fund of Liaoning Provincial Education Department(No.L201703)+1 种基金the Liaoning Revitalization Talent Program(No.XLYC1807172)the Training Project of Liaoning Higher Education Institutions in Domestic and Overseas(No.2018LNGXGJWPY-YB008)
文摘A novel vibration isolation device called the nonlinear energy sink(NES)with NiTiNOL-steel wire ropes(NiTi-ST)is applied to a whole-spacecraft system.The NiTi-ST is used to describe the damping of the NES,which is coupled with the modified Bouc-Wen model of hysteresis.The NES with NiTi-ST vibration reduction principle uses the irreversibility of targeted energy transfer(TET)to concentrate the energy locally on the nonlinear oscillator,and then dissipates it through damping in the NES with NiTi-ST.The generalized vibration transmissibility,obtained by the root mean square treatment of the harmonic response of the nonlinear output frequency response functions(NOFRFs),is first used as the evaluation index to analyze the whole-spacecraft system in the future.An optimization analysis of the impact of system responses is performed using different parameters of NES with NiTi-ST based on the transmissibility of NOFRFs.Finally,the effects of vibration suppression by varying the parameters of NiTi-ST are analyzed from the perspective of energy absorption.The results indicate that NES with NiTi-ST can reduce excessive vibration of the whole-spacecraft system,without changing its natural frequency.Moreover,the NES with NiTi-ST can be directly used in practical engineering applications.
基金This work was supported by the National Natural Science Foundation of China(No.60304002), and the Science and Technical Development Plan ofShandong Province(No.2004GG4204014).
文摘In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded. Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.
基金This work was supported by the Hong Kong Research Grants Council(No.CUHK4316/02E)the National Natural Science Foundations of China(No.60374038)
文摘The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, which has been an intensive research subject since 1995. In this paper, we will further investigate the solvability of the robust disturbance rejection problem of the RTAC system by the measurement output feedback control based on the robust output regulation method. We have obtained a design by overcoming two major obstacles: find a closed-form solution of the regulator equations; and devise a nonlinear internal model to account for non-polynomial nonlinearities.
基金Supported by National Natural Science Foundation of P. R. China (60304002)the Science and Technology Development Plan of Shandong Province (2004GG4204014)
文摘The output-feedback stabilization control problem is investigated for a class of nonlinear uncertain systems. Based on the multivariable analog of circle criterion, an observer is designed to estimate the system states and hence the dynamical equations that the estimation error satisfies are derived first. Then, by using integral backstepping approach together with completing square technique, the output-feedback stabilization control is constructively designed such that the closed-loop system is asymptotically stable. Finally, an example is given to illustrate the main results of this paper.
基金This work was supported in part by the Japanese Ministry of Education, Science, Sports and Culture under both the GrantAid of General Scientific Research (No. C-15560387)the 21st Century Center of Excellence (COE) Program.
文摘This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly known. Using a feedback domination design method, we explicitly construct a dynamic output compensator which globally stabilizes such an uncertain nonlinear system. The usefulness of our result is illustrated with an example.
基金supported by National Basic Research Program of China(973 Program)(No.2012CB821205)National Natural Science Foundation of China(Nos.61021002 and 61203125)Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.2013039)
文摘This paper is concerned with the problem of global output feedback stabilization in probability for a class of switched stochastic nonlinear systems under arbitrary switchings. The subsystems are assumed to be in output feedback form and driven by white noise. By introducing a common Lyapunov function, the common output feedback controller independent of switching signals is constructed based on the backstepping approach. It is proved that the zero solution of the closed-loop system is fourth-moment exponentially stable. An example is given to show the effectiveness of the proposed method.
基金This work was supported by National Natural Science Foundation of China(NSFC)(No.60374015).
文摘A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results, where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.
基金Supported by National Natural Science Foundation of China(60374002,60674036)the Science and Technical Development Plan of Shandong Province (2004GG4204014)the Program for New Century Excellent Talents in University of China
文摘The capability to perform fast load-following has been an important issue in the power industry. An output tracking control system of a boiler-turbine unit is developed. The system is composed of stable inversion and feedback controller. The stable inversion is implemented as a feedforward controller to improve the load-following capability, and the feedback controller is utilized to guarantee the stability and robustness of the whole system. Loop-shaping H∞ method is used to design the feedback controller and the final controller is reduced to a multivariable PI form. The output tracking control system takes account of the multivariable, nonlinear and coupling behavior of boiler-turbine system, and the simulation tests show that the control system works well and can be widely applied.
基金This work was supported by the National Natural Science Foundation of China (No. 60374015) and Shaanxi Province Nature Science Foundation(No. 2003A15).
文摘This paper extends the adaptive neural network (NN) control approaches to a class of unknown output feedback nonlinear time-delay systems. An adaptive output feedback NN tracking controller is designed by backstepping technique. NNs are used to approximate unknown functions dependent on time delay, Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the NN approximation errors. Based on Lyapunov- Krasovskii functional, the semi-global uniform ultimate boundedness of all the signals in the closed-loop system is proved, The feasibility is investigated by two illustrative simulation examples.
基金This work was supported by National Natural Science Foundation of China (No. 60710002)Program for Changjiang Scholars and Innovative Research Team in University
文摘The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condition than the existing triangulartype condition. Under the assumption that the input unmodeled dynamics is minimum-phase and of relative degree zero, a dynamic output compensator is explicitly constructed based on the nonseparation principle. An example illustrates the usefulness of the proposed method.
基金supported by the National Natural Science Foundation of China (60804021)the Fundamental Research Funds for the Central Universities (JY10000970001)
文摘An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme.
基金supported by the National Natural Science Foundation of China(61074004)the Research Fund for the Doctoral Program of Higher Education(20110121110017)
文摘Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.
基金Supported by National Natural Science Foundations of China (61325016, 61273084, 61233014), Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), and the Independent Innovation Foundation of Shan- dong University (2012JC014)
文摘Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain linear matrix equations are solvable. Once these equations are solvable, the state feedback regulator can easily be constructed.
基金supported by National Natural Science Foundation of China(Nos.61573172,61305149 and 61403174)333 High-level Talents Training Program in Jiangsu Province(No.BRA2015352)Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No.15KJB510011)
文摘This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis function neural network approximation method and backstepping technique, we successfully construct a controller to guarantee the solution process to be bounded in probability.The tracking error signal is 4th-moment semi-globally uniformly ultimately bounded(SGUUB) and can be regulated into a small neighborhood of the origin in probability. A simulation example is given to demonstrate the effectiveness of the control scheme.
基金This project was supported by the National Natural Science Foundation of China(69974017 60274020 60128303)
文摘The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear continuous systems confined by a bound function, the nonlinearities of the systems may be of varied forms or uncertain; the designed stabilizer is robust means that a class of nonlinear continuous systems can be stabilized by the same output feedback stabilization schemes; numerical simulation examples are given.
基金supported by the National Natural Science Foundation of China (60804021)
文摘For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme.