There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound o...There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.展开更多
Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be ...Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.展开更多
Linear singular vector and linear singular value can only describe the evolution of sufficiently small perturbations during the period in which the tangent linear model is valid. With this in mind,the applications of ...Linear singular vector and linear singular value can only describe the evolution of sufficiently small perturbations during the period in which the tangent linear model is valid. With this in mind,the applications of nonlinear optimization methods to the atmospheric and oceanic sciences are introduced, which include nonlinear singular vector (NSV) and nonlinear singular value (NSVA), conditional nonlinear optimal perturbation (CNOP), and their applications to the studies of predictability in numerical weather and climate prediction. The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be explored by NSV and CNOP. Also attentions are paid to the introduction of the classification of predictability problems, which are related to the maximum predictable time, the maximum prediction error, and the maximum allowing error of initial value and the parameters. All the information has the background of application to the evaluation of products of numerical weather and climate prediction. Furthermore the nonlinear optimization methods of the sensitivity analysis with numerical model are also introduced, which can give a quantitative assessment whether a numerical model is able to simulate the observations and find the initial field that yield the optimal simulation. Finally, the difficulties in the lack of ripe algorithms are also discussed, which leave future work to both computational mathematics and scientists in geophysics.展开更多
This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the gl...This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.展开更多
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti...Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.展开更多
Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly effi...Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events.展开更多
The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typic...The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.展开更多
In this paper we present a nonmonotone trust region algorithm for general nonlinear constrained optimization problems. The main idea of this paper is to combine Yuan's technique[1] with a nonmonotone method simila...In this paper we present a nonmonotone trust region algorithm for general nonlinear constrained optimization problems. The main idea of this paper is to combine Yuan's technique[1] with a nonmonotone method similar to Ke and Han [2]. This new algorithm may not only keep the robust properties of the algorithm given by Yuan, but also have some advantages led by the nonmonotone technique. Under very mild conditions, global convergence for the algorithm is given. Numerical experiments demonstrate the efficiency of the algorithm.展开更多
In this paper, we present a rule to improve the nonlinear solution with frequency map analysis (FMA), and without frequently revisiting the optimization algorithm. Two aspects of FMA are emphasized. The first one is...In this paper, we present a rule to improve the nonlinear solution with frequency map analysis (FMA), and without frequently revisiting the optimization algorithm. Two aspects of FMA are emphasized. The first one is the tune shift with amplitude, which can be used to improve the solution of harmonic sextupoles, and thus obtain a large dynamic aperture. The second one is the tune diffusion rate, which can be used to select a quiet tune. Application of these ideas is carried out in the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF), and the detailed processes, as well as better solutions, are presented in this paper. Discussions about the nonlinear behaviors of off-momentum particles are also presented.展开更多
In the storage ring of the third generation light sources, nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime, ...In the storage ring of the third generation light sources, nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime, especially in a low emittance lattice. An improved optimization algorithm based on the single resonance approach, which takes relative weight and initial Harmonic Sextupole Integral Strength (HSIS) as search variables, is discussed in this paper. Applications of the improved method in several test lattices are presented. Detailed analysis of the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF) is particularly emphasized. Furthermore, cancellation of the driving terms is investigated to reveal the physical mechanism of the harmonic sextupole compensation. Sensitivity to the weight and the initial HSIS as well as dependence of the optimum solution on the convergent factor is analyzed.展开更多
A new two-level subspace method is proposed for solving the general unconstrained minimization formulations discretized from infinite-dimensional optimization problems. At each iteration, the algorithm executes either...A new two-level subspace method is proposed for solving the general unconstrained minimization formulations discretized from infinite-dimensional optimization problems. At each iteration, the algorithm executes either a direct step on the current level or a coarse subspace correction step. In the coarse subspace correction step, we augment the traditional coarse grid space by a two-dimensional subspace spanned by the coordinate direction and the gradient direction at the current point. Global convergence is proved and convergence rate is studied under some mild conditions on the discretized functions. Preliminary numerical experiments on a few variational problems show that our two-level subspace method is promising.展开更多
This paper addresses an ordinary differential equations (ODE) approach to constrained nonlinear optimization problem. First, it proposes a method of finding the local optimal points for the problem with equality and i...This paper addresses an ordinary differential equations (ODE) approach to constrained nonlinear optimization problem. First, it proposes a method of finding the local optimal points for the problem with equality and inequality constraints. We prove the asymptotical stability of the singular points about partial variables. The condition of overall uniform asymptotical stability is also given.展开更多
A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equation...A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.展开更多
Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed bas...Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer.展开更多
A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, th...A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP.展开更多
This paper considers dealing with path constraints in the framework of the improved control vector iteration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be dir...This paper considers dealing with path constraints in the framework of the improved control vector iteration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be directly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the ll penalty function and a novel smoothing technique are in-troduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algo-rithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reaCtor operation problem are in agreement with the literature reoorts, and the comoutational efficiency is also high.展开更多
Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulat...Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn Tucker conditions.展开更多
This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves t...This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves the optimality conditions like the traditional indirect methods do, but uses a discretization technique inspired from direct methods. Compared with other indirect approaches, the proposed approach has two main advantages: (1) the discretized optimization problem only employs unconstrained nonlinear programming (NLP) algorithms such as BFGS (Broyden-Fletcher-Goldfarb-Shanno), rather than constrained NLP algorithms, therefore the computational efficiency is increased; (2) the relationship between the number of the discretized time intervals and the integration error of the four-step Adams predictor-corrector algorithm is established, thus the minimal number of time intervals that under desired integration tolerance can be estimated. The classic batch reactor problem is tested and compared in detail with literature reports, and the results reveal the effectiveness of the proposed approach. Dealing with path constraints requires extra techniques, and will be studied in the second paper.展开更多
The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives...The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.展开更多
An augmented Lagrange algorithm for nonlinear optimizations with second-order cone constraints is proposed based on a Lowner operator associated with a potential function for the optimization problems with inequality ...An augmented Lagrange algorithm for nonlinear optimizations with second-order cone constraints is proposed based on a Lowner operator associated with a potential function for the optimization problems with inequality constraints.The favorable properties of both the Lowner operator and the corresponding augmented Lagrangian are discussed.And under some mild assumptions,the rate of convergence of the augmented Lagrange algorithm is studied in detail.展开更多
基金sponsored by the Key Knowledge Innovation Program of the Chinese Academy of Sciences (Grant. No. KZCX2-YW-QN203)the National Basic Research Program of China(2007CB411800),the GYHY200906009 of China Meteorological Administration
文摘There are three common types of predictability problems in weather and climate, which each involve different constrained nonlinear optimization problems: the lower bound of maximum predictable time, the upper bound of maximum prediction error, and the lower bound of maximum allowable initial error and parameter error. Highly effcient algorithms have been developed to solve the second optimization problem. And this optimization problem can be used in realistic models for weather and climate to study the upper bound of the maximum prediction error. Although a filtering strategy has been adopted to solve the other two problems, direct solutions are very time-consuming even for a very simple model, which therefore limits the applicability of these two predictability problems in realistic models. In this paper, a new strategy is designed to solve these problems, involving the use of the existing highly effcient algorithms for the second predictability problem in particular. Furthermore, a series of comparisons between the older filtering strategy and the new method are performed. It is demonstrated that the new strategy not only outputs the same results as the old one, but is also more computationally effcient. This would suggest that it is possible to study the predictability problems associated with these two nonlinear optimization problems in realistic forecast models of weather or climate.
基金financially supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)the Research Fund of State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University(Grant No.1104)
文摘Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.
文摘Linear singular vector and linear singular value can only describe the evolution of sufficiently small perturbations during the period in which the tangent linear model is valid. With this in mind,the applications of nonlinear optimization methods to the atmospheric and oceanic sciences are introduced, which include nonlinear singular vector (NSV) and nonlinear singular value (NSVA), conditional nonlinear optimal perturbation (CNOP), and their applications to the studies of predictability in numerical weather and climate prediction. The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be explored by NSV and CNOP. Also attentions are paid to the introduction of the classification of predictability problems, which are related to the maximum predictable time, the maximum prediction error, and the maximum allowing error of initial value and the parameters. All the information has the background of application to the evaluation of products of numerical weather and climate prediction. Furthermore the nonlinear optimization methods of the sensitivity analysis with numerical model are also introduced, which can give a quantitative assessment whether a numerical model is able to simulate the observations and find the initial field that yield the optimal simulation. Finally, the difficulties in the lack of ripe algorithms are also discussed, which leave future work to both computational mathematics and scientists in geophysics.
文摘This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.
基金The Australian Research Council(DP200101197,DP230101107).
文摘Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41930971,42330111,and 42405061)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab).
文摘Orthogonal conditional nonlinear optimal perturbations(O-CNOPs)have been used to generate ensemble forecasting members for achieving high forecasting skill of high-impact weather and climate events.However,highly efficient calculations for O-CNOPs are still challenging in the field of ensemble forecasting.In this study,we combine a gradient-based iterative idea with the Gram‒Schmidt orthogonalization,and propose an iterative optimization method to compute O-CNOPs.This method is different from the original sequential optimization method,and allows parallel computations of O-CNOPs,thus saving a large amount of computational time.We evaluate this method by using the Lorenz-96 model on the basis of the ensemble forecasting ability achieved and on the time consumed for computing O-CNOPs.The results demonstrate that the parallel iterative method causes O-CNOPs to yield reliable ensemble members and to achieve ensemble forecasting skills similar to or even slightly higher than those produced by the sequential method.Moreover,the parallel method significantly reduces the computational time for O-CNOPs.Therefore,the parallel iterative method provides a highly effective and efficient approach for calculating O-CNOPs for ensemble forecasts.Expectedly,it can play an important role in the application of the O-CNOPs to realistic ensemble forecasts for high-impact weather and climate events.
基金supported by the National Natural Science Foundation of China (Grant No. 42288101, 42375062, 42476192, 42275158)the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (Earth Lab)the GHfund C (202407036001)
文摘The Conditional Nonlinear Optimal Perturbation(CNOP)method works essentially for conventional numerical models;however,it is not fully applicable to the commonly used deep-learning forecasting models(DLMs),which typically input multiple time slices without deterministic dependencies.In this study,the CNOP for DLMs(CNOP-DL)is proposed as an extension of the CNOP in the time dimension.This method is useful for targeted observations as it indicates not only where but also when to deploy additional observations.The CNOP-DL is calculated for a forecast case of sea surface temperature in the South China Sea with a DLM.The CNOP-DL identifies a sensitive area northwest of Palawan Island at the last input time.Sensitivity experiments demonstrate that the sensitive area identified by the CNOP-DL is effective not only for the CNOP-DL itself,but also for random perturbations.Therefore,this approach holds potential for guiding practical field campaigns.Notably,forecast errors are more sensitive to time than to location in the sensitive area.It highlights the crucial role of identifying the time of the sensitive area in targeted observations,corroborating the usefulness of extending the CNOP in the time dimension.
基金This work was done when the author was studying in the State Key Laboratory of Scientific and Engi- neering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, P. O. Box 2719, Beijing 10008
文摘In this paper we present a nonmonotone trust region algorithm for general nonlinear constrained optimization problems. The main idea of this paper is to combine Yuan's technique[1] with a nonmonotone method similar to Ke and Han [2]. This new algorithm may not only keep the robust properties of the algorithm given by Yuan, but also have some advantages led by the nonmonotone technique. Under very mild conditions, global convergence for the algorithm is given. Numerical experiments demonstrate the efficiency of the algorithm.
文摘In this paper, we present a rule to improve the nonlinear solution with frequency map analysis (FMA), and without frequently revisiting the optimization algorithm. Two aspects of FMA are emphasized. The first one is the tune shift with amplitude, which can be used to improve the solution of harmonic sextupoles, and thus obtain a large dynamic aperture. The second one is the tune diffusion rate, which can be used to select a quiet tune. Application of these ideas is carried out in the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF), and the detailed processes, as well as better solutions, are presented in this paper. Discussions about the nonlinear behaviors of off-momentum particles are also presented.
文摘In the storage ring of the third generation light sources, nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime, especially in a low emittance lattice. An improved optimization algorithm based on the single resonance approach, which takes relative weight and initial Harmonic Sextupole Integral Strength (HSIS) as search variables, is discussed in this paper. Applications of the improved method in several test lattices are presented. Detailed analysis of the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF) is particularly emphasized. Furthermore, cancellation of the driving terms is investigated to reveal the physical mechanism of the harmonic sextupole compensation. Sensitivity to the weight and the initial HSIS as well as dependence of the optimum solution on the convergent factor is analyzed.
文摘A new two-level subspace method is proposed for solving the general unconstrained minimization formulations discretized from infinite-dimensional optimization problems. At each iteration, the algorithm executes either a direct step on the current level or a coarse subspace correction step. In the coarse subspace correction step, we augment the traditional coarse grid space by a two-dimensional subspace spanned by the coordinate direction and the gradient direction at the current point. Global convergence is proved and convergence rate is studied under some mild conditions on the discretized functions. Preliminary numerical experiments on a few variational problems show that our two-level subspace method is promising.
基金This work is supported by Chongqing Application Basic Research Foundation of China
文摘This paper addresses an ordinary differential equations (ODE) approach to constrained nonlinear optimization problem. First, it proposes a method of finding the local optimal points for the problem with equality and inequality constraints. We prove the asymptotical stability of the singular points about partial variables. The condition of overall uniform asymptotical stability is also given.
文摘A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.
基金supported by the National Natural Science Foundation of China(Grant Nos.11902085 and 11832009)the Science and Technology Association Young Scientific and Technological Talents Support Project of Guangzhou City(Grant No.SKX20210304)the Natural Science Foundation of Guangdong Province(Grant No.2021Al515010320).
文摘Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer.
基金supported by the National Natural Science Foundation of China (60374063)the Natural Science Basic Research Plan Project in Shaanxi Province (2006A12)+1 种基金the Science and Technology Research Project of the Educational Department in Shaanxi Province (07JK180)the Emphasis Research Plan Project of Baoji University of Arts and Science (ZK0840)
文摘A new method to solve dynamic nonlinear constrained optimization problems (DNCOP) is proposed. First, the time (environment) variable period of DNCOP is divided into several equal subperiods. In each subperiod, the DNCOP is approximated by a static nonlinear constrained optimization problem (SNCOP). Second, for each SNCOP, inspired by the idea of multiobjective optimization, it is transformed into a static bi-objective optimization problem. As a result, the original DNCOP is approximately transformed into several static bi-objective optimization problems. Third, a new multiobjective evolutionary algorithm is proposed based on a new selection operator and an improved nonuniformity mutation operator. The simulation results indicate that the proposed algorithm is effective for DNCOP.
基金Supported by the National Natural Science Foundation of China(U1162130)the National High Technology Research and Development Program of China(2006AA05Z226)Outstanding Youth Science Foundation of Zhejiang Province(R4100133)
文摘This paper considers dealing with path constraints in the framework of the improved control vector iteration (CVI) approach. Two available ways for enforcing equality path constraints are presented, which can be directly incorporated into the improved CVI approach. Inequality path constraints are much more difficult to deal with, even for small scale problems, because the time intervals where the inequality path constraints are active are unknown in advance. To overcome the challenge, the ll penalty function and a novel smoothing technique are in-troduced, leading to a new effective approach. Moreover, on the basis of the relevant theorems, a numerical algo-rithm is proposed for nonlinear dynamic optimization problems with inequality path constraints. Results obtained from the classic batch reaCtor operation problem are in agreement with the literature reoorts, and the comoutational efficiency is also high.
文摘Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn Tucker conditions.
基金Supported by the National Natural Science Foundation of China (U1162130)the National High Technology Research and Development Program of China (2006AA05Z226)the Outstanding Youth Science Foundation,Zhejiang Province (R4100133)
文摘This study proposes an efficient indirect approach for general nonlinear dynamic optimization problems without path constraints. The approach incorporates the virtues both from indirect and direct methods: it solves the optimality conditions like the traditional indirect methods do, but uses a discretization technique inspired from direct methods. Compared with other indirect approaches, the proposed approach has two main advantages: (1) the discretized optimization problem only employs unconstrained nonlinear programming (NLP) algorithms such as BFGS (Broyden-Fletcher-Goldfarb-Shanno), rather than constrained NLP algorithms, therefore the computational efficiency is increased; (2) the relationship between the number of the discretized time intervals and the integration error of the four-step Adams predictor-corrector algorithm is established, thus the minimal number of time intervals that under desired integration tolerance can be estimated. The classic batch reactor problem is tested and compared in detail with literature reports, and the results reveal the effectiveness of the proposed approach. Dealing with path constraints requires extra techniques, and will be studied in the second paper.
基金Supported by the National Natural Science Foundation of China(11201357,81271513 and 91324201)the Fundamental Research Funds for the Central Universities under project(2014-Ia-001)
文摘The convergence analysis of a nonlinear Lagrange algorithm for solving nonlinear constrained optimization problems with both inequality and equality constraints is explored in detail. The estimates for the derivatives of the multiplier mapping and the solution mapping of the proposed algorithm are discussed via the technique of the singular value decomposition of matrix. Based on the estimates, the local convergence results and the rate of convergence of the algorithm are presented when the penalty parameter is less than a threshold under a set of suitable conditions on problem functions. Furthermore, the condition number of the Hessian of the nonlinear Lagrange function with respect to the decision variables is analyzed, which is closely related to efficiency of the algorithm. Finally, the preliminary numericM results for several typical test problems are reported.
基金supported by the Fundamental Research Funds for the Central Universities(No.2018IB016).
文摘An augmented Lagrange algorithm for nonlinear optimizations with second-order cone constraints is proposed based on a Lowner operator associated with a potential function for the optimization problems with inequality constraints.The favorable properties of both the Lowner operator and the corresponding augmented Lagrangian are discussed.And under some mild assumptions,the rate of convergence of the augmented Lagrange algorithm is studied in detail.