We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis main...We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.展开更多
The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear...The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.展开更多
This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussio...This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussion on the convergence rates of regular solutions.展开更多
In this paper,we are concerned with the existence of the positive bounded and blow-up radial solutions of the(k1,k2)-Hessian system■where G is a nonlinear operator,Ki=Ski(λ(D^(2) z_(i)))+ψ_(i)(|x|)|▽_(zi)|^(ki),i=...In this paper,we are concerned with the existence of the positive bounded and blow-up radial solutions of the(k1,k2)-Hessian system■where G is a nonlinear operator,Ki=Ski(λ(D^(2) z_(i)))+ψ_(i)(|x|)|▽_(zi)|^(ki),i=1,2.Under the appropriate conditions on gi and g2,our main results are obtained by using the monotone iterative method and the Arzela-Ascoli theorem.Furthermore,our main results also extend the previous existence results for both the single equation and systems.展开更多
We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the F...We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the Feng spectrum)of the whole operator matrix and that of its entries.In addition,the connection between the Furi-Martelli-Vignoli spectrum of the whole operator matrix and that of its Schur complement is presented by means of Schur decomposition.展开更多
In this paper, we consider a general nonlinear integral operator Hαi, βi ( f1,..., fn ; g1,..., gn)(z). Some results including coefficient problems, univalency condition and radius of convexity for this integral...In this paper, we consider a general nonlinear integral operator Hαi, βi ( f1,..., fn ; g1,..., gn)(z). Some results including coefficient problems, univalency condition and radius of convexity for this integral operator are given. Furthermore, we discuss the mapping properties between Hαi,βi (f1 , fn, ; g1,..., gn)(z) and subclasses of analytic functions with bounded boundary rotation. The same subjects for some corresponding classes are shown upon specializing the parameters in our main results.展开更多
Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator,...Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator, coherent states are constructed using Barut–Girardello formalism and their basic properties are discussed. Furthermore, the statistical properties of these states are investigated by means of Mandel parameter and second order correlation function. Moreover,it is shown that in the harmonic limit, all the results obtained for the non-linear oscillator with spatially varying mass reduce to corresponding results of the linear oscillator with constant mass.展开更多
The concept of (Phi, Delta)-type probabilistic contractor couple was introduced which simplifies and weakens the definition of probabilistic contractor couple given by Zhang Shisheng. The existence and uniqueness of t...The concept of (Phi, Delta)-type probabilistic contractor couple was introduced which simplifies and weakens the definition of probabilistic contractor couple given by Zhang Shisheng. The existence and uniqueness of the solutions for a system of nonlinear operator equations with this kind of propabilistic contractor couple in N. A. Menger PN-spaces were studied. The works improve and extend the corresponding results by M. Altman, A. C. Lee, W. J. Padgett et al.展开更多
In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank th...In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank theorem are established in global analysis.展开更多
This paper deals with a Dirac operator with periodic and finite-bands potentials.Taking advantage of the commutativity of the monodromy operator and the Dirac operator, we define the Bloch functions and multiplicator ...This paper deals with a Dirac operator with periodic and finite-bands potentials.Taking advantage of the commutativity of the monodromy operator and the Dirac operator, we define the Bloch functions and multiplicator curve, which leads to the formula of DubrovinNovikov's type. Further, by calculation of residues on the complex sphere and via gauge transformation, we get the trace formulae of eigenfunctions corresponding to the left endpoints and right end-points of the spectral bands, respectively. As an application, we obtain a completely integrable Hamiltonian system in Liouville sense through nonlinearization of the Dirac spectral problem.展开更多
A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, ...A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.展开更多
Abstract Recently,the numerical methods for long-time dynamics of PDEs with weak nonlinearity have received more and more attention.For the nonlinear Schrödinger equation(NLS)with wave operator(NLSW)and weak nonl...Abstract Recently,the numerical methods for long-time dynamics of PDEs with weak nonlinearity have received more and more attention.For the nonlinear Schrödinger equation(NLS)with wave operator(NLSW)and weak nonlinearity controlled by a small valueε∈(0,1],an exponential wave integrator Fourier pseudo-spectral(EWIFP)discretization has been developed(Guo et al.,2021)and proved to be uniformly accurate aboutεup to the time atΟ(1/ε^(2))However,the EWIFP method is not time symmetric and can not preserve the discrete energy.As we know,the time symmetry and energy-preservation are the important structural features of the true solution and we hope that this structure can be inherited along the numerical solution.In this work,we propose a time symmetric and energy-preserving exponential wave integrator Fourier pseudo-spectral(SEPEWIFP)method for the NLSW with periodic boundary conditions.Through rigorous error analysis,we establish uniform error bounds of the numerical solution atΟ(h^(mo)+ε^(2-βτ2))up to the time atΟ(1/ε^(β))forβ∈[0,2]where h andτare the mesh size and time step,respectively,and m0 depends on the regularity conditions.The tools for error analysis mainly include cut-off technique and the standard energy method.We also extend the results on error bounds,energy-preservation and time symmetry to the oscillatory NLSW with wavelength atΟ(1/ε^(2))in time which is equivalent to the NLSW with weak nonlinearity.Numerical experiments confirm that the theoretical results in this paper are correct.Our method is novel because that to the best of our knowledge there has not been any energy-preserving exponential wave integrator method for the NLSW.展开更多
This paper proposes an image encryption algorithm LQBPNN(logistic quantum and back propagation neural network)based on chaotic sequences incorporating quantum keys. Firstly, the improved one-dimensional logistic cha...This paper proposes an image encryption algorithm LQBPNN(logistic quantum and back propagation neural network)based on chaotic sequences incorporating quantum keys. Firstly, the improved one-dimensional logistic chaotic sequence is used as the basic key sequence. After the quantum key is introduced, the quantum key is incorporated into the chaotic sequence by nonlinear operation. Then the pixel confused process is completed by the neural network. Finally, two sets of different mixed secret key sequences are used to perform two rounds of diffusion encryption on the confusing image. The experimental results show that the randomness and uniformity of the key sequence are effectively enhanced. The algorithm has a secret key space greater than 2182. The adjacent pixel correlation of the encrypted image is close to 0, and the information entropy is close to 8. The ciphertext image can resist several common attacks such as typical attacks, statistical analysis attacks and differential attacks.展开更多
Data processing for seismic network is very complex and fussy,because a lot of data is recorded in seismicnetwork every day,which make it impossible to process these data all by manual work.Therefore,seismic datashoul...Data processing for seismic network is very complex and fussy,because a lot of data is recorded in seismicnetwork every day,which make it impossible to process these data all by manual work.Therefore,seismic datashould be processed automatically to produce a initial results about events detection and location.Afterwards,these results are reviewed and modified by analyst.In automatic processing data quality checking is important.There are three main problem data that exist in real seismic records,which include:spike,repeated data and展开更多
This paper examines the existence and uniqueness of solutions for the fractional boundary value problems with integral boundary conditions.Banach's contraction mapping principle and Schaefer's fixed point theo...This paper examines the existence and uniqueness of solutions for the fractional boundary value problems with integral boundary conditions.Banach's contraction mapping principle and Schaefer's fixed point theorem have been used besides topological technique of approximate solutions.An example is propounded to uphold our results.展开更多
An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. ...An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.展开更多
By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.Fo...By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.For the first order Hopf equation,there exist infinitely many symmetries which can be expressed by means of an arbitrary function in arbitrary dimensions.The general solution of the first order Hopf equation is obtained via hodograph transformation.For the second order Hopf equation,the Hopf-diffusion equation,there are five sets of infinitely many symmetries.Especially,there exist a set of primary branch symmetry with which contains an arbitrary solution of the usual linear diffusion equation.Some special implicit exact group invariant solutions of the Hopf-diffusion equation are also given.展开更多
The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup&g...The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup>th</sup>. Undoubtedly, the solution of nonlinear differential equations using ADM is presided over by the acquisition of Adomian polynomials, which are not always easy to find. Thus, the present study proposes easy-to-implement Maple programs for the computation of Adomian polynomials. In fact, the proposed algorithms performed remarkably on several test functions, consisting of one- and multi-variable nonlinearities. Moreover, the introduced programs are advantageous in terms of simplicity;coupled with the requirement of less computational time in comparison with what is known in the literature.展开更多
In the present paper we study the maximum dissipative extension of Schrodingeroperator.introduce the generalized indefinite metvic space and get the representation ofmaximum dissipative extension of Schrodinger operat...In the present paper we study the maximum dissipative extension of Schrodingeroperator.introduce the generalized indefinite metvic space and get the representation ofmaximum dissipative extension of Schrodinger operator in natural boundary space.make preparation for the further study longtime chaotic behaxior of infinite dimensiondynamics system in nonlinear Schrodinger equation.展开更多
Du Fort-Frankel finite difference method(FDM)was firstly proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953.It is an explicit and unconditionally von Neumann stabl...Du Fort-Frankel finite difference method(FDM)was firstly proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953.It is an explicit and unconditionally von Neumann stable scheme.However,there has been no research work on numerical solutions of nonlinear Schrödinger equations with wave operator by using Du Fort-Frankel-type finite difference methods(FDMs).In this study,a class of invariants-preserving Du Fort-Frankel-type FDMs are firstly proposed for one-dimensional(1D)and two-dimensional(2D)nonlinear Schrödinger equations with wave operator.By using the discrete energy method,it is shown that their solutions possess the discrete energy and mass conservative laws,and conditionally converge to exact solutions with an order of for ofο(T^(2)+h_(x)^(2)+(T/h_(x))^(2))1D problem and an order ofο(T^(2)+h_(x)^(2)+h_(Y)^(2)+(T/h_(X))^(2)+(T/h_(y))^(2))for 2D problem in H1-norm.Here,τdenotes time-step size,while,hx and hy represent spatial meshsizes in x-and y-directions,respectively.Then,by introducing a stabilized term,a type of stabilized invariants-preserving Du Fort-Frankel-type FDMs are devised.They not only preserve the discrete energies and masses,but also own much better stability than original schemes.Finally,numerical results demonstrate the theoretical analyses.展开更多
基金the Fundamental Research Funds for the Central Universities(Grant No.2024MS126).
文摘We study the dynamics of fundamental and double-pole breathers and solitons for the focusing and defocusing nonlinear Schrodinger equation with the sextic operator under non-zero boundary conditions. Our analysis mainly focuses onthe dynamical properties of simple- and double-pole solutions. Firstly, through verification, we find that solutions undernon-zero boundary conditions can be transformed into solutions under zero boundary conditions, whether in simple-pole ordouble-pole cases. For the focusing case, in the investigation of simple-pole solutions, temporal periodic breather and thespatial-temporal periodic breather are obtained by modulating parameters. Additionally, in the case of multi-pole solitons,we analyze parallel-state solitons, bound-state solitons, and intersecting solitons, providing a brief analysis of their interactions.In the double-pole case, we observe that the two solitons undergo two interactions, resulting in a distinctive “triangle”crest. Furthermore, for the defocusing case, we briefly consider two situations of simple-pole solutions, obtaining one andtwo dark solitons.
基金Supported by the National Natural Science Foundation of China (69983005)
文摘The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.
文摘This article is devoted to the regularization of nonlinear ill-posed problems with accretive operators in Banach spaces. The data involved are assumed to be known approximately. The authors concentrate their discussion on the convergence rates of regular solutions.
基金supported by NSFC(12001344)the Graduate Education and Teaching Innovation Project of Shanxi,China(2021YJJG142)+1 种基金the Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0123)the Technology Research Foundation of Chongqing Educational Committee(KJQN201900539 and KJQN202000528)。
文摘In this paper,we are concerned with the existence of the positive bounded and blow-up radial solutions of the(k1,k2)-Hessian system■where G is a nonlinear operator,Ki=Ski(λ(D^(2) z_(i)))+ψ_(i)(|x|)|▽_(zi)|^(ki),i=1,2.Under the appropriate conditions on gi and g2,our main results are obtained by using the monotone iterative method and the Arzela-Ascoli theorem.Furthermore,our main results also extend the previous existence results for both the single equation and systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11561048 and 11761029)the Natural Science Foundation of Inner Mongolia,China(Grant Nos.2019MS01019 and 2020ZD01)。
文摘We investigate the Furi-Martelli-Vignoli spectrum and the Feng spectrum of continuous nonlinear block operator matrices,and mainly describe the relationship between the Furi-Martelli-Vignoli spectrum(compared to the Feng spectrum)of the whole operator matrix and that of its entries.In addition,the connection between the Furi-Martelli-Vignoli spectrum of the whole operator matrix and that of its Schur complement is presented by means of Schur decomposition.
基金Supported by the Scientific Research Fund of Sichuan Provincial Education Department(Grant No.14ZB0364)
文摘In this paper, we consider a general nonlinear integral operator Hαi, βi ( f1,..., fn ; g1,..., gn)(z). Some results including coefficient problems, univalency condition and radius of convexity for this integral operator are given. Furthermore, we discuss the mapping properties between Hαi,βi (f1 , fn, ; g1,..., gn)(z) and subclasses of analytic functions with bounded boundary rotation. The same subjects for some corresponding classes are shown upon specializing the parameters in our main results.
文摘Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator, coherent states are constructed using Barut–Girardello formalism and their basic properties are discussed. Furthermore, the statistical properties of these states are investigated by means of Mandel parameter and second order correlation function. Moreover,it is shown that in the harmonic limit, all the results obtained for the non-linear oscillator with spatially varying mass reduce to corresponding results of the linear oscillator with constant mass.
文摘The concept of (Phi, Delta)-type probabilistic contractor couple was introduced which simplifies and weakens the definition of probabilistic contractor couple given by Zhang Shisheng. The existence and uniqueness of the solutions for a system of nonlinear operator equations with this kind of propabilistic contractor couple in N. A. Menger PN-spaces were studied. The works improve and extend the corresponding results by M. Altman, A. C. Lee, W. J. Padgett et al.
基金This research was supported by the National Natural Science Foundation of China (10271053)the Doctoral Programme Foundation of the Ministry of Education of China
文摘In this article thc concept of local conjugation of a C^1 mapping between two Banach manifolds is introduced. Thcn a rank theorem for nonlinear scmi-Fredholm operators between two Banach manifolds and a finite rank theorem are established in global analysis.
基金Supported by the National Natural Science Foundation of China(Grant No.61473332)the Natural Science Foundation of Zhejiang Province(Grant No.LQ14A010009)the Natural Science Foundation of Huzhou City(Grant No.2013YZ06)
文摘This paper deals with a Dirac operator with periodic and finite-bands potentials.Taking advantage of the commutativity of the monodromy operator and the Dirac operator, we define the Bloch functions and multiplicator curve, which leads to the formula of DubrovinNovikov's type. Further, by calculation of residues on the complex sphere and via gauge transformation, we get the trace formulae of eigenfunctions corresponding to the left endpoints and right end-points of the spectral bands, respectively. As an application, we obtain a completely integrable Hamiltonian system in Liouville sense through nonlinearization of the Dirac spectral problem.
基金supported by the National Natural Science Foundation of China(Nos.61372076 and 61301171)the Programme of Introducing Talents of Discipline to Universities(No.B08038)
文摘A scheme of an optical quantum Fredkin gate is presented based on weak cross-Kerr nonlinearity. By an auxiliary coherent state with the cross-Kerr nonlinearity effect, photons can interact with each other indirectly, and a non-demolition measurement for photons can be implemented. Combined with the homodyne detection, classical feedforward, polarization beam splitters and Pauli-X operations, a controlled-path gate is constructed. Furthermore, a quantum Fredkin gate is built based on the controlled-path gate. The proposed Fredkin gate is simple in structure and feasible by current experimental technology.
基金supported in part by the Natural Science Foundation of Hebei Province(Grant No.A2021205036).
文摘Abstract Recently,the numerical methods for long-time dynamics of PDEs with weak nonlinearity have received more and more attention.For the nonlinear Schrödinger equation(NLS)with wave operator(NLSW)and weak nonlinearity controlled by a small valueε∈(0,1],an exponential wave integrator Fourier pseudo-spectral(EWIFP)discretization has been developed(Guo et al.,2021)and proved to be uniformly accurate aboutεup to the time atΟ(1/ε^(2))However,the EWIFP method is not time symmetric and can not preserve the discrete energy.As we know,the time symmetry and energy-preservation are the important structural features of the true solution and we hope that this structure can be inherited along the numerical solution.In this work,we propose a time symmetric and energy-preserving exponential wave integrator Fourier pseudo-spectral(SEPEWIFP)method for the NLSW with periodic boundary conditions.Through rigorous error analysis,we establish uniform error bounds of the numerical solution atΟ(h^(mo)+ε^(2-βτ2))up to the time atΟ(1/ε^(β))forβ∈[0,2]where h andτare the mesh size and time step,respectively,and m0 depends on the regularity conditions.The tools for error analysis mainly include cut-off technique and the standard energy method.We also extend the results on error bounds,energy-preservation and time symmetry to the oscillatory NLSW with wavelength atΟ(1/ε^(2))in time which is equivalent to the NLSW with weak nonlinearity.Numerical experiments confirm that the theoretical results in this paper are correct.Our method is novel because that to the best of our knowledge there has not been any energy-preserving exponential wave integrator method for the NLSW.
基金supported by National Natural Science Foundation of China (No. 61402012)Doctor Foundation of Anhui University of Science and Technology
文摘This paper proposes an image encryption algorithm LQBPNN(logistic quantum and back propagation neural network)based on chaotic sequences incorporating quantum keys. Firstly, the improved one-dimensional logistic chaotic sequence is used as the basic key sequence. After the quantum key is introduced, the quantum key is incorporated into the chaotic sequence by nonlinear operation. Then the pixel confused process is completed by the neural network. Finally, two sets of different mixed secret key sequences are used to perform two rounds of diffusion encryption on the confusing image. The experimental results show that the randomness and uniformity of the key sequence are effectively enhanced. The algorithm has a secret key space greater than 2182. The adjacent pixel correlation of the encrypted image is close to 0, and the information entropy is close to 8. The ciphertext image can resist several common attacks such as typical attacks, statistical analysis attacks and differential attacks.
基金National Natural Science Foundation of China (60172026).
文摘Data processing for seismic network is very complex and fussy,because a lot of data is recorded in seismicnetwork every day,which make it impossible to process these data all by manual work.Therefore,seismic datashould be processed automatically to produce a initial results about events detection and location.Afterwards,these results are reviewed and modified by analyst.In automatic processing data quality checking is important.There are three main problem data that exist in real seismic records,which include:spike,repeated data and
文摘This paper examines the existence and uniqueness of solutions for the fractional boundary value problems with integral boundary conditions.Banach's contraction mapping principle and Schaefer's fixed point theorem have been used besides topological technique of approximate solutions.An example is propounded to uphold our results.
文摘An inverse problem for identification of the coefficient in heat-conduction equation is considered. After reducing the problem to a nonlinear ill-posed operator equation, Newton type iterative methods are considered. The implicit iterative method is applied to the linearized Newton equation, and the key step in the process is that a new reasonable a posteriori stopping rule for the inner iteration is presented. Numerical experiments for the new method as well as for Tikhonov method and Bakushikskii method are given, and these results show the obvious advantages of the new method over the other ones.
基金Supported by the National Natural Science Foundation of China Grant under Nos.11435005,11175092,and 11205092Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No.ZF1213K.C.Wong Magna Fund in Ningbo University
文摘By using a general symmetry theory related to invariant functions,strong symmetry operators and hereditary operators,we find a general integrable hopf heirarchy with infinitely many general symmetries and Lax pairs.For the first order Hopf equation,there exist infinitely many symmetries which can be expressed by means of an arbitrary function in arbitrary dimensions.The general solution of the first order Hopf equation is obtained via hodograph transformation.For the second order Hopf equation,the Hopf-diffusion equation,there are five sets of infinitely many symmetries.Especially,there exist a set of primary branch symmetry with which contains an arbitrary solution of the usual linear diffusion equation.Some special implicit exact group invariant solutions of the Hopf-diffusion equation are also given.
文摘The immense quest for proficient numerical schemes for the solution of mathematical models featuring nonlinear differential equations led to the realization of the Adomian decomposition method (ADM) in the 80<sup>th</sup>. Undoubtedly, the solution of nonlinear differential equations using ADM is presided over by the acquisition of Adomian polynomials, which are not always easy to find. Thus, the present study proposes easy-to-implement Maple programs for the computation of Adomian polynomials. In fact, the proposed algorithms performed remarkably on several test functions, consisting of one- and multi-variable nonlinearities. Moreover, the introduced programs are advantageous in terms of simplicity;coupled with the requirement of less computational time in comparison with what is known in the literature.
文摘In the present paper we study the maximum dissipative extension of Schrodingeroperator.introduce the generalized indefinite metvic space and get the representation ofmaximum dissipative extension of Schrodinger operator in natural boundary space.make preparation for the further study longtime chaotic behaxior of infinite dimensiondynamics system in nonlinear Schrodinger equation.
基金supported by the National Natural Science Foundation of China(Grant No.11861047)by the Natural Science Foundation of Jiangxi Province for Distinguished Young Scientists(Grant No.20212ACB211006)by the Natural Science Foundation of Jiangxi Province(Grant No.20202BABL 201005).
文摘Du Fort-Frankel finite difference method(FDM)was firstly proposed for linear diffusion equations with periodic boundary conditions by Du Fort and Frankel in 1953.It is an explicit and unconditionally von Neumann stable scheme.However,there has been no research work on numerical solutions of nonlinear Schrödinger equations with wave operator by using Du Fort-Frankel-type finite difference methods(FDMs).In this study,a class of invariants-preserving Du Fort-Frankel-type FDMs are firstly proposed for one-dimensional(1D)and two-dimensional(2D)nonlinear Schrödinger equations with wave operator.By using the discrete energy method,it is shown that their solutions possess the discrete energy and mass conservative laws,and conditionally converge to exact solutions with an order of for ofο(T^(2)+h_(x)^(2)+(T/h_(x))^(2))1D problem and an order ofο(T^(2)+h_(x)^(2)+h_(Y)^(2)+(T/h_(X))^(2)+(T/h_(y))^(2))for 2D problem in H1-norm.Here,τdenotes time-step size,while,hx and hy represent spatial meshsizes in x-and y-directions,respectively.Then,by introducing a stabilized term,a type of stabilized invariants-preserving Du Fort-Frankel-type FDMs are devised.They not only preserve the discrete energies and masses,but also own much better stability than original schemes.Finally,numerical results demonstrate the theoretical analyses.