A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these fu...In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.展开更多
Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from i...Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from images, and the description of spatial features on maps.However, little achievements have been made for it by far.In this paper, spatial similarity relation was put forward with the introduction of automated map generalization in the construction of multi-scale map databases;then the definition of spatial similarity relations was presented based on set theory, the concept of spatial similarity degree was given, and the characteristics of spatial similarity were discussed in detail, in-cluding reflexivity, symmetry, non-transitivity, self-similarity in multi-scale spaces, and scale-dependence.Finally a classification system for spatial similarity relations in multi-scale map spaces was addressed.This research may be useful to automated map generalization, spatial similarity retrieval and spatial reasoning.展开更多
A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The cont...A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.展开更多
During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells...During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells,the germanium(Ge)layer occupies the majority of the thickness as the substrate.Due to the intrinsic brittleness of semiconductor material,there exist various defects during the preparation and assembly of solar cells,the influences of which tend to be intensified by the irradiation effect.In this work,first,Ge specimens for mechanical tests were prepared at scales from microscopic to macroscopic.Then,after different doses of electron irradiation,the mechanical properties of the Ge specimens were investigated.The experimental results demonstrate that electron irradiation has an obvious effect on the mechanical property variation of Ge in diverse scales.The four-point bending test indicates that the elastic modulus,fracture strength,and maximum displacement of the Ge specimens all increase,and reach the maximum value at the irradiation dose of 1×10^(15)e/cm^(2).The micrometer scale cantilever and nanoindentation tests present similar trends for Ge specimens after irradiation.Atomic Force Microscope(AFM)also observed the change in surface roughness.Finally,a fitting model was established to characterize the relation between modulus change and electron irradiation dose.展开更多
Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by ...Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.展开更多
This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NR...This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.展开更多
A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order...A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.展开更多
We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold i...We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approximation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data points with respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements.展开更多
An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive f...An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.展开更多
The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital ...The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital eccentricity. The flexible tether is modeled as a series of lumped masses and viscoelastic dampers so that a finite multi- degree-of-freedom nonlinear system is obtained. The stability of equilibrium positions of the nonlinear system is then analyzed via a simplified two-degree-freedom model in an orbital reference frame. In-plane motions of the tethered satellite system are studied numerically, taking the space environments into account. A large number of numerical simulations show that the flexible tethered satellite system displays nonlinear dynamic characteristics, such as bifurcations, quasi-periodic oscillations, and chaotic motions.展开更多
The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity d...The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.展开更多
The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota...The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota's bilinear formalism, and the rogue wave solution is derived as a long-wave limit of the space periodic solution.展开更多
To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is pr...To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is proposed.Firstly,EMD is employed to decompose the raw drift series into a finite number of intrinsic mode functions(IMFs)with the frequency descending successively.Secondly,according to the time-frequency characteristic of each IMF,the corresponding SVR prediction model is established based on phase space reconstruction.Finally,the prediction results are obtained by adding up the prediction results of all IMFs with equal weight.The experimental results demonstrate the validity of the proposed model in random drift prediction of MEMS gyroscope.Compared with a single SVR model,the proposed model has higher prediction precision,which can provide the basis for drift error compensation of MEMS gyroscope.展开更多
In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by me...In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.展开更多
Using Daher's fixed point theorem, we obtain a local existence theorem, in which the assumption is weaker than That in the Theorem 2.1 in [2]. Based on this theorem, we get a global existence theorem which is an e...Using Daher's fixed point theorem, we obtain a local existence theorem, in which the assumption is weaker than That in the Theorem 2.1 in [2]. Based on this theorem, we get a global existence theorem which is an extension of certain results for ordinary differential equations.展开更多
Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-part...Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-particle interaction in space plasmas. The signals considered here are medium scale electron density irregularities and ELF/ULF electrostatic turbulence. Nonlinearities are mainly observed in the ELF range. They are independently pointed out in time series associated with fluctuations in electronic density and in time series associated with the measurement of one electric field component. Peaks in cross-bicorrelation function and in mutual information clearly show that, in well delimited frequency bands, the wave-particle interactions are nonlinear above a certain level of fluctuations. The way the energy is transferred within the frequencies of density fluctuations is indicated by a bi-spectra analysis.展开更多
We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonli...We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.展开更多
In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. ...In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.展开更多
The purpose of this paper is to introduce and study the semi-groups of nonlinear contractions in probabilistic normed spaces and to establish the Crandall-Liggett's exponential formula for some kind of accretive m...The purpose of this paper is to introduce and study the semi-groups of nonlinear contractions in probabilistic normed spaces and to establish the Crandall-Liggett's exponential formula for some kind of accretive mappings in probabilistic normed spaces. As applications, these results are utilized to study the Cauchy problem for a kind of differential inclusions with accretive mappings in probabilistic normed spaces.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
文摘In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.
文摘Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from images, and the description of spatial features on maps.However, little achievements have been made for it by far.In this paper, spatial similarity relation was put forward with the introduction of automated map generalization in the construction of multi-scale map databases;then the definition of spatial similarity relations was presented based on set theory, the concept of spatial similarity degree was given, and the characteristics of spatial similarity were discussed in detail, in-cluding reflexivity, symmetry, non-transitivity, self-similarity in multi-scale spaces, and scale-dependence.Finally a classification system for spatial similarity relations in multi-scale map spaces was addressed.This research may be useful to automated map generalization, spatial similarity retrieval and spatial reasoning.
基金supported by the National Basic Research Program of China(973 Program)(No.2013CB228002)
文摘A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.
基金co-supported by the Joint Fund of Advanced Aerospace Manufacturing Technology Research,China(No.U1937601)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures+1 种基金China(No.MCMS-I-0221Y01)National Natural Science Foundation of China for Creative Research Groups(No.51921003).
文摘During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells,the germanium(Ge)layer occupies the majority of the thickness as the substrate.Due to the intrinsic brittleness of semiconductor material,there exist various defects during the preparation and assembly of solar cells,the influences of which tend to be intensified by the irradiation effect.In this work,first,Ge specimens for mechanical tests were prepared at scales from microscopic to macroscopic.Then,after different doses of electron irradiation,the mechanical properties of the Ge specimens were investigated.The experimental results demonstrate that electron irradiation has an obvious effect on the mechanical property variation of Ge in diverse scales.The four-point bending test indicates that the elastic modulus,fracture strength,and maximum displacement of the Ge specimens all increase,and reach the maximum value at the irradiation dose of 1×10^(15)e/cm^(2).The micrometer scale cantilever and nanoindentation tests present similar trends for Ge specimens after irradiation.Atomic Force Microscope(AFM)also observed the change in surface roughness.Finally,a fitting model was established to characterize the relation between modulus change and electron irradiation dose.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.62031013)Guangdong Province Key Construction Discipline Scientific Research Capacity Improvement Project(Grant No.2022ZDJS117).
文摘Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.
基金supported by the National Natural Science Foundation of China(No.51965034).
文摘This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle.We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory(NREL),to research the effects of the nonlinear flap-wise vibration characteristics.The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam,and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first.Then,the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force.Lastly,it is truncated by the Galerkin method and analyzed semi-analytically using the multi-scale analysis method,and numerical simulations are carried out to compare the simulation results of finite elements with the numerical simulation results using Campbell diagram analysis of blade vibration.The results indicated that the rotational speed of the impeller has a significant impact on blade vibration.When the wheel speed of 12.1 rpm and excitation amplitude of 1.23 the maximum displacement amplitude of the blade has increased from 0.72 to 3.16.From the amplitude-frequency curve,it can be seen that the multi-peak characteristic of blade amplitude frequency is under centrifugal nonlinearity.Closed phase trajectories in blade nonlinear vibration,exhibiting periodic motion characteristics,are found through phase diagrams and Poincare section diagrams.
文摘A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.
文摘We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approximation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data points with respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements.
基金co-supported by National Natural Science Foundation of China (Nos. 91116017, 60974106 and 11102080)Funding for Outstanding Doctoral Dissertation in NUAA (No. BCXJ10-04)
文摘An adaptive robust attitude tracking control law based on switched nonlinear systems is presented for a variable structure near space vehicle (VSNSV) in the presence of uncertainties and disturbances. The adaptive fuzzy systems are employed for approximating unknown functions in the flight dynamic model and their parameters are updated online. To improve the flight robust performance, robust controllers with adaptive gains are designed to compensate for the approximation errors and thus they have less design conservation. Moreover, a systematic procedure is developed for the synthesis of adaptive fuzzy dynamic surface control (DSC) approach. According to the common Lyapunov function theory, it is proved that all signals of the closed-loop system are uniformly ultimately bounded by the continuous controller. The simulation results demonstrate the effectiveness and robustness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China(Nos.11002068 and11202094)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(No.0113Y01)the Priority Academic Program of Jiangsu Higher Education Institutions
文摘The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital eccentricity. The flexible tether is modeled as a series of lumped masses and viscoelastic dampers so that a finite multi- degree-of-freedom nonlinear system is obtained. The stability of equilibrium positions of the nonlinear system is then analyzed via a simplified two-degree-freedom model in an orbital reference frame. In-plane motions of the tethered satellite system are studied numerically, taking the space environments into account. A large number of numerical simulations show that the flexible tethered satellite system displays nonlinear dynamic characteristics, such as bifurcations, quasi-periodic oscillations, and chaotic motions.
基金funded by the Natural Science Foundation Committee,China(41364001,41371435)
文摘The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization.
基金Supported by the Teaching Steering Committee Research Project of Higher-Learning Institutions of Ministry of Education(JZW-16-DD-15)
文摘The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota's bilinear formalism, and the rogue wave solution is derived as a long-wave limit of the space periodic solution.
基金National Natural Science Foundation of China(No.61427810)。
文摘To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is proposed.Firstly,EMD is employed to decompose the raw drift series into a finite number of intrinsic mode functions(IMFs)with the frequency descending successively.Secondly,according to the time-frequency characteristic of each IMF,the corresponding SVR prediction model is established based on phase space reconstruction.Finally,the prediction results are obtained by adding up the prediction results of all IMFs with equal weight.The experimental results demonstrate the validity of the proposed model in random drift prediction of MEMS gyroscope.Compared with a single SVR model,the proposed model has higher prediction precision,which can provide the basis for drift error compensation of MEMS gyroscope.
文摘In this paper, the author obtains an existence theorem of minimal and maximal solutions for the periodic boundary value problems of nonlinear impulsive integrodifferential equations of mixed type in Banach space by means of the monotone iterative technique and cone theory based on a comparison result.
文摘Using Daher's fixed point theorem, we obtain a local existence theorem, in which the assumption is weaker than That in the Theorem 2.1 in [2]. Based on this theorem, we get a global existence theorem which is an extension of certain results for ordinary differential equations.
文摘Statistics of order 2 (variance, auto and cross-correlation functions, auto and cross-power spectra) and 3 (skewness, auto and cross-bicorrelation functions, auto and cross-bispectra) are used to analyze the wave-particle interaction in space plasmas. The signals considered here are medium scale electron density irregularities and ELF/ULF electrostatic turbulence. Nonlinearities are mainly observed in the ELF range. They are independently pointed out in time series associated with fluctuations in electronic density and in time series associated with the measurement of one electric field component. Peaks in cross-bicorrelation function and in mutual information clearly show that, in well delimited frequency bands, the wave-particle interactions are nonlinear above a certain level of fluctuations. The way the energy is transferred within the frequencies of density fluctuations is indicated by a bi-spectra analysis.
文摘We prove an existence result without assumptions on the growth of some nonlinear terms, and the existence of a renormalized solution. In this work, we study the existence of renormalized solutions for a class of nonlinear parabolic systems with three unbounded nonlinearities, in the form { b1(x,u1)/ t-div(a(x,t,u1,Du1))+div(Ф1(u1))+f1(x,u1,u2)=O in Q, b2(x,u2)/ t-div(a(x,t,u2,Du2))+div(Ф2(u2))+f2(x,u1,u2)=O in Q in the framework of weighted Sobolev spaces, where b(x,u) is unbounded function on u, the Carath6odory function ai satisfying the coercivity condition, the general growth condition and only the large monotonicity, the function Фi is assumed to be continuous on ]R and not belong to (Lloc1(Q))N.
基金National Institute of Technology Karnataka, India, for the financial support
文摘In this paper, we deal with nonlinear ill-posed problems involving m-accretive mappings in Banach spaces. We consider a derivative and inverse free method for the imple- mentation of Lavrentiev regularization method. Using general HSlder type source condition we obtain an optimal order error estimate. Also we consider the adaptive parameter choice strategy proposed by Pereverzev and Schock (2005) for choosing the regularization parameter.
文摘The purpose of this paper is to introduce and study the semi-groups of nonlinear contractions in probabilistic normed spaces and to establish the Crandall-Liggett's exponential formula for some kind of accretive mappings in probabilistic normed spaces. As applications, these results are utilized to study the Cauchy problem for a kind of differential inclusions with accretive mappings in probabilistic normed spaces.