期刊文献+
共找到413篇文章
< 1 2 21 >
每页显示 20 50 100
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
1
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
在线阅读 下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
2
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
在线阅读 下载PDF
Discussion About Nonlinear Time Series Prediction Using Least Squares Support Vector Machine 被引量:3
3
作者 XURui-Rui BIANGuo-Xin GAOChen-Feng CHENTian-Lun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6期1056-1060,共5页
The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we e... The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction. First, the parameter gamma and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values.. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved. 展开更多
关键词 least squares support vector machine nonlinear time series PREDICTION CLUSTERING
在线阅读 下载PDF
Support Vector Machine-Based Nonlinear System Modeling and Control 被引量:1
4
作者 张浩然 韩正之 +1 位作者 冯瑞 于志强 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期53-58,共6页
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base... This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness. 展开更多
关键词 support vector machine Statistical learning theory nonlinear systems Modeling and control.
在线阅读 下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
5
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 support vector machine Genetic algorithm nonlinear model predictive control Neural network Modeling
在线阅读 下载PDF
Nonlinear correction of photoelectric displacement sensor based on least square support vector machine 被引量:1
6
作者 郭杰荣 何怡刚 刘长青 《Journal of Central South University》 SCIE EI CAS 2011年第5期1614-1618,共5页
A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor a... A model of correcting the nonlinear error of photoelectric displacement sensor was established based on the least square support vector machine.The parameters of the correcting nonlinear model,such as penalty factor and kernel parameter,were optimized by chaos genetic algorithm.And the nonlinear correction of photoelectric displacement sensor based on least square support vector machine was applied.The application results reveal that error of photoelectric displacement sensor is less than 1.5%,which is rather satisfactory for nonlinear correction of photoelectric displacement sensor. 展开更多
关键词 least square support vector machine POSITION photoelectric displacement sensor nonlinear correct
在线阅读 下载PDF
Inverse Learning Control of Nonlinear Systems Using Support Vector Machines
7
作者 胡中辉 李远贵 +1 位作者 蔡云泽 许晓鸣 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第2期135-138,142,共5页
An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs... An inverse learning control scheme using the support vector machine (SVM) for regression was proposed. The inverse learning approach is originally researched in the neural networks. Compared with neural networks, SVMs overcome the problems of local minimum and curse of dimensionality. Additionally, the good generalization performance of SVMs increases the robustness of control system. The method of designing SVM inverse learning controller was presented. The proposed method is demonstrated on tracking problems and the performance is satisfactory. 展开更多
关键词 support vector machines learning control inverse model nonlinear system
在线阅读 下载PDF
Ensemble Nonlinear Support Vector Machine Approach for Predicting Chronic Kidney Diseases
8
作者 S.Prakash P.Vishnu Raja +3 位作者 A.Baseera D.Mansoor Hussain V.R.Balaji K.Venkatachalam 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1273-1287,共15页
Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urba... Urban living in large modern cities exerts considerable adverse effectson health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urbanizedcountries. The primary objective of this work is to introduce and develop predictive analytics for predicting CKDs. However, prediction of huge samples isbecoming increasingly difficult. Meanwhile, MapReduce provides a feasible framework for programming predictive algorithms with map and reduce functions.The relatively simple programming interface helps solve problems in the scalability and efficiency of predictive learning algorithms. In the proposed work, theiterative weighted map reduce framework is introduced for the effective management of large dataset samples. A binary classification problem is formulated usingensemble nonlinear support vector machines and random forests. Thus, instead ofusing the normal linear combination of kernel activations, the proposed work creates nonlinear combinations of kernel activations in prototype examples. Furthermore, different descriptors are combined in an ensemble of deep support vectormachines, where the product rule is used to combine probability estimates ofdifferent classifiers. Performance is evaluated in terms of the prediction accuracyand interpretability of the model and the results. 展开更多
关键词 Chronic disease CLASSIFICATION iterative weighted map reduce machine learning methods ensemble nonlinear support vector machines random forests
在线阅读 下载PDF
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
9
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
原文传递
Unstable unsteady aerodynamic modeling based on least squares support vector machines with general excitation 被引量:10
10
作者 Senlin CHEN Zhenghong GAO +2 位作者 Xinqi ZHU Yiming DU Chao PANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2499-2509,共11页
Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hy... Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hysteresis loop that exists in the actual maneuvering process of the aircraft.Here,an excitation input suitable for nonlinear system identification is introduced to model unsteady aerodynamic forces with any motion in the amplitude and frequency ranges based on the Least Squares Support Vector Machines(LS-SVMs).In the selection of the input form,avoiding the use of reduced frequency as a parameter makes the model more universal.After model training is completed,the method is applied to predict the lift coefficient,drag coefficient and pitching moment coefficient of the RAE2822 airfoil,in sine and sweep motions under the conditions of plunging and pitching at Mach number 0.8.The predicted results of the initial unstable process and the final stable process are in close agreement with the Computational Fluid Dynamics(CFD)data,demonstrating the feasibility of the model for nonlinear unsteady aerodynamics modeling and the effectiveness of the input design approach. 展开更多
关键词 Aerodynamics models Forced vibration Input design Least squares support vector machines nonlinear system System identification Unsteady aerodynamics
原文传递
Hybrid calibration method for six-component force/torque transducers of wind tunnel balance based on support vector machines 被引量:4
11
作者 Ma Yingkun Xie Shilin +1 位作者 Zhang Xinong Luo Yajun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期554-562,共9页
A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and... A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers. 展开更多
关键词 HYBRID MULTI-DIMENSIONAL nonlinear coupling support vector machines Transducers
原文传递
Approximate entropy and support vector machines for electroencephalogram signal classification 被引量:3
12
作者 Zhen Zhang Yi Zhou +3 位作者 Ziyi Chen Xianghua Tian Shouhong Du Ruimei Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第20期1844-1852,共9页
The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate ... The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy. 展开更多
关键词 neural regeneration brain injury EPILEPSY ELECTROENCEPHALOGRAM nonlinear dynamics approximate entropy support vector machine automatic real-time detection classification GENERALIZATION grants-supported paper NEUROREGENERATION
在线阅读 下载PDF
A novel excitation controller using support vector machines and approximate models 被引量:1
13
作者 Xiaofang YUAN Yaonan WANG Shutao LI 《控制理论与应用(英文版)》 EI 2008年第3期239-245,共7页
This paper proposes a novel excitation controller using support vector machines (SVM) and approximate models. The nonlinear control law is derived directly based on an input-output approximation method via Taylor ex... This paper proposes a novel excitation controller using support vector machines (SVM) and approximate models. The nonlinear control law is derived directly based on an input-output approximation method via Taylor expansion, which not only avoids complex control development and intensive computation, but also avoids online learning or adjustment. Only a general SVM modelling technique is involved in both model identification and controller implementation. The robustness of the stability is rigorously established using the Lyapunov method. Several simulations demonstrate the effectiveness of the proposed excitation controller. 展开更多
关键词 support vector machines nonlinear control Approximate model Neural networks IDENTIFICATION
在线阅读 下载PDF
Learning control of nonhonolomic robot based on support vector machine
14
作者 冯勇 葛运建 +1 位作者 曹会彬 孙玉香 《Journal of Central South University》 SCIE EI CAS 2012年第12期3400-3406,共7页
A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic c... A learning controller of nonhonolomic robot in real-time based on support vector machine(SVM)is presented.The controller includes two parts:one is kinematic controller based on nonlinear law,and the other is dynamic controller based on SVM.The kinematic controller is aimed to provide desired velocity which can make the steering system stable.The dynamic controller is aimed to transform the desired velocity to control torque.The parameters of the dynamic system of the robot are estimated through SVM learning algorithm according to the training data of sliding windows in real time.The proposed controller can adapt to the changes in the robot model and uncertainties in the environment.Compared with artificial neural network(ANN)controller,SVM controller can converge to the reference trajectory more quickly and the tracking error is smaller.The simulation results verify the effectiveness of the method proposed. 展开更多
关键词 nonhonolomic robot learning control support vector machine nonlinear control law dynamic control
在线阅读 下载PDF
MULTI-RESOLUTION LEAST SQUARES SUPPORT VECTOR MACHINES
15
作者 Wang Liejun Zhang Taiyi Zhou Yatong 《Journal of Electronics(China)》 2007年第5期701-704,共4页
The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed alg... The Least Squares Support Vector Machines (LS-SVM) is an improvement to the SVM. Combined the LS-SVM with the Multi-Resolution Analysis (MRA),this letter proposes the Multi-resolution LS-SVM (MLS-SVM).The proposed algorithm has the same theoretical framework as MRA but with better approximation ability.At a fixed scale MLS-SVM is a classical LS-SVM,but MLS-SVM can gradually approximate the target function at different scales.In experiments,the MLS-SVM is used for nonlinear system identification,and achieves better identification accuracy. 展开更多
关键词 support vector machines (SVM) Least square method Multi-Resolution Analysis (MRA) nonlinear system identification
在线阅读 下载PDF
Nonlinear decoupling controller design based on least squares support vector regression 被引量:3
16
作者 文香军 张雨浓 +1 位作者 阎威武 许晓鸣 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第2期275-284,共10页
Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimat... Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control of a general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is un- known or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method. 展开更多
关键词 support vector machine (SVM) Decoupling control nonlinear system Generalized inverse system
在线阅读 下载PDF
Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines 被引量:5
17
作者 Qing-chao WANG Jian-zhong ZHANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第1期25-35,共11页
This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed ... This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM).Input-output data from the first principle model of the pH neutralization process are used for the Wiener model identification.Simulation results show that the proposed Wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) Wiener models,Laguerre-polynomial Wiener models,and linear Laguerre models.The identified Wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process.The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR Wiener model based NMPC,Laguerre-polynomial Wiener model based NMPC,and linear model predictive control (LMPC).Validation results show that the proposed NMPC outperforms the other three controllers. 展开更多
关键词 Wiener model nonlinear model predictive control (NMPC) pH neutralization process Laguerre filters Least squares support vector machines (LSSVM)
原文传递
Nonlinear joint PP-PS AVO inversion based on improved Bayesian inference and LSSVM 被引量:10
18
作者 Xie Wei Wang Yan-Chun +4 位作者 Liu Xue-Qing Bi Chen-Chen Zhang Feng-Qi Fang Yuan Tahir Azeem 《Applied Geophysics》 SCIE CSCD 2019年第1期64-76,共13页
Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equatio... Multiwave seismic technology promotes the application of joint PP–PS amplitude versus offset (AVO) inversion;however conventional joint PP–PS AVO inversioan is linear based on approximations of the Zoeppritz equations for multiple iterations. Therefore the inversion results of P-wave, S-wave velocity and density exhibit low precision in the faroffset;thus, the joint PP–PS AVO inversion is nonlinear. Herein, we propose a nonlinear joint inversion method based on exact Zoeppritz equations that combines improved Bayesian inference and a least squares support vector machine (LSSVM) to solve the nonlinear inversion problem. The initial parameters of Bayesian inference are optimized via particle swarm optimization (PSO). In improved Bayesian inference, the optimal parameter of the LSSVM is obtained by maximizing the posterior probability of the hyperparameters, thus improving the learning and generalization abilities of LSSVM. Then, an optimal nonlinear LSSVM model that defi nes the relationship between seismic refl ection amplitude and elastic parameters is established to improve the precision of the joint PP–PS AVO inversion. Further, the nonlinear problem of joint inversion can be solved through a single training of the nonlinear inversion model. The results of the synthetic data suggest that the precision of the estimated parameters is higher than that obtained via Bayesian linear inversion with PP-wave data and via approximations of the Zoeppritz equations. In addition, results using synthetic data with added noise show that the proposed method has superior anti-noising properties. Real-world application shows the feasibility and superiority of the proposed method, as compared with Bayesian linear inversion. 展开更多
关键词 nonlinear problem JOINT PP-PS AVO inversion particle swarm optimization Bayesian inference least SQUARES support vector machine
在线阅读 下载PDF
SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control 被引量:12
19
作者 钟伟民 何国龙 +1 位作者 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期373-379,共7页
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identifica... A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function
在线阅读 下载PDF
Multi-label learning algorithm with SVM based association 被引量:4
20
作者 Feng Pan Qin Danyang +3 位作者 Ji Ping Ma Jingya Zhang Yan Yang Songxiang 《High Technology Letters》 EI CAS 2019年第1期97-104,共8页
Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algori... Multi-label learning is an active research area which plays an important role in machine learning. Traditional learning algorithms, however, have to depend on samples with complete labels. The existing learning algorithms with missing labels do not consider the relevance of labels, resulting in label estimation errors of new samples. A new multi-label learning algorithm with support vector machine(SVM) based association(SVMA) is proposed to estimate missing labels by constructing the association between different labels. SVMA will establish a mapping function to minimize the number of samples in the margin while ensuring the margin large enough as well as minimizing the misclassification probability. To evaluate the performance of SVMA in the condition of missing labels, four typical data sets are adopted with the integrity of the labels being handled manually. Simulation results show the superiority of SVMA in dealing with the samples with missing labels compared with other models in image classification. 展开更多
关键词 multi-label learning missing labels ASSOCIATION support vector machine(SVM)
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部