期刊文献+
共找到1,800篇文章
< 1 2 90 >
每页显示 20 50 100
Nonlinear Model Algorithmic Control of a pH Neutralization Process 被引量:12
1
作者 邹志云 于蒙 +4 位作者 王志甄 刘兴红 郭宇晴 张风波 郭宁 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期395-400,共6页
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea... Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors. 展开更多
关键词 model algorithmic control nonlinear model predictive control Hammerstein model pH neutralization process control simulation
在线阅读 下载PDF
Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models 被引量:8
2
作者 Lianfei ZHAI Tianyou CHAI 《控制理论与应用(英文版)》 EI 2006年第1期62-69,共8页
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra... For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm. 展开更多
关键词 nonlinear Decoupling control PID Neural networks Multiple models Generalized minimum variance
在线阅读 下载PDF
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
3
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
在线阅读 下载PDF
Robust Adaptive Gain Higher Order Sliding Mode Observer Based Control-constrained Nonlinear Model Predictive Control for Spacecraft Formation Flying 被引量:10
4
作者 Ranjith Ravindranathan Nair Laxmidhar Behera 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期367-381,共15页
This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher... This work deals with the development of a decentralized optimal control algorithm, along with a robust observer,for the relative motion control of spacecraft in leader-follower based formation. An adaptive gain higher order sliding mode observer has been proposed to estimate the velocity as well as unmeasured disturbances from the noisy position measurements.A differentiator structure containing the Lipschitz constant and Lebesgue measurable control input, is utilized for obtaining the estimates. Adaptive tuning algorithms are derived based on Lyapunov stability theory, for updating the observer gains,which will give enough flexibility in the choice of initial estimates.Moreover, it may help to cope with unexpected state jerks. The trajectory tracking problem is formulated as a finite horizon optimal control problem, which is solved online. The control constraints are incorporated by using a nonquadratic performance functional. An adaptive update law has been derived for tuning the step size in the optimization algorithm, which may help to improve the convergence speed. Moreover, it is an attractive alternative to the heuristic choice of step size for diverse operating conditions. The disturbance as well as state estimates from the higher order sliding mode observer are utilized by the plant output prediction model, which will improve the overall performance of the controller. The nonlinear dynamics defined in leader fixed Euler-Hill frame has been considered for the present work and the reference trajectories are generated using Hill-Clohessy-Wiltshire equations of unperturbed motion. The simulation results based on rigorous perturbation analysis are presented to confirm the robustness of the proposed approach. 展开更多
关键词 Adaptive gain higher order sliding mode observer leader-follower formation nonlinear model predictive control spacecraft formation flying tracking control
在线阅读 下载PDF
Application of a Robust Model Reference Adaptive Control Algorithm to a Nonlinear Automotive Actuator 被引量:6
5
作者 Alessandro di Gaeta Umberto Montanaro 《International Journal of Automation and computing》 EI CSCD 2014年第4期377-391,共15页
Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adap... Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adaptive methods can effectively face nonlinearities that are common to many automotive electromechanical devices. We consider here, as a representative case study, the control of a strongly nonlinear automotive actuator. The experimental results confirm the effectiveness of the method to cope with unmodeled nonlinear terms and unknown parameters. In addition, the engineering performance indexes computed on experimental data clearly show that the robust adaptive strategy provides better performance compared with those given by a classical model-based control solution with fixed gains. 展开更多
关键词 model reference adaptive control robust adaptive control nonlinear systems automotive control electronic throttle body electromechanical actuators
原文传递
Constrained predictive control based on T-S fuzzy model for nonlinear systems 被引量:7
6
作者 Su Baili Chen Zengqiang Yuan Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期95-100,共6页
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th... A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems. 展开更多
关键词 Generalized predictive control (GPC) nonlinear system T-S fuzzy model Input constraint Fuzzy cluster
在线阅读 下载PDF
SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control 被引量:12
7
作者 钟伟民 何国龙 +1 位作者 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期373-379,共7页
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identifica... A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function
在线阅读 下载PDF
Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching 被引量:3
8
作者 Yong WANG Qian’gang ZHENG +1 位作者 Ziyan DU Haibo ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第2期561-571,共11页
In order to reach a compromise between fast response control and torques matching control in double turboshaft engines,research on nonlinear model predictive control for turboshaft engines based on double engines torq... In order to reach a compromise between fast response control and torques matching control in double turboshaft engines,research on nonlinear model predictive control for turboshaft engines based on double engines torques matching is conducted.Meanwhile,a Nonlinear Model Predictive Control(NMPC)method is proposed,which combines the control index of the power turbine speed with torques matching of double engines creatively.In addition to the control index,the difference of output torques between each engine is also incorporated in the objective function as a penalty term to ensure constant speed control and short torques matching time.Simulation results demonstrate that relative to unilateral torques matching,the settling time of the bidirectional matching method can be reduced by nearly 30.8%.Nevertheless,compared with the bidirectional torques matching method under the cascade PID controller,the NMPC method can decrease the overshoot of the power turbine speed by 65%and reduce the matching time by 15.5%synchronously.Besides fast response control of turboshaft engines,fast torques matching control of double engines is accomplished as well. 展开更多
关键词 DOUBLE turboshaft engines Fast response control HELICOPTER nonlinear model PREDICTIVE control TORQUES MATCHING method
原文传递
High-Order Volterra Model Predictive Control and Its Application to a Nonlinear Polymerisation Process 被引量:4
9
作者 Hiroshi Kashiwagi 《International Journal of Automation and computing》 EI 2005年第2期208-214,共7页
Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves ... Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order. Keywords Model predictive control - Volterra series - process control - nonlinear control Yun Li is a senior lecturer at University of Glasgow, UK, where has taught and researched in evolutionary computation and control engineering since 1991. He worked in the UK National Engineering Laboratory and Industrial Systems and Control Ltd, Glasgow in 1989 and 1990. In 1998, he established the IEEE CACSD Evolutionary Computation Working Group and the European Network of Excellence in Evolutionary Computing (EvoNet) Workgroup on Systems, Control, and Drives. In summer 2002, he served as a visiting professor to Kumamoto University, Japan. He is also a visiting professor at University of Electronic Science and Technology of China. His research interests are in parallel processing, design automation and discovery of engineering systems using evolutionary learning and intelligent search techniques. Applications include control, system modelling and prediction, circuit design, microwave engineering, and operations management. He has advised 12 Ph.D.s in evolutionary computation and has 140 publications.Hiroshi Kashiwagi received B.E, M.E. and Ph.D. degrees in measurement and control engineering from the University of Tokyo, Japan, in 1962, 1964 and 1967 respectively. In 1967 he became an Associate Professor and in 1976 a Professor at Kumamoto University. From 1973 to 1974, he served as a visiting Associate Professor at Purdue University, Indiana, USA. From 1990 to 1994, he was the Director at Computer Center of Kumamoto University. He has also served as a member of Board of Trustees of Society of Instrument and Control Engineers (SICE), Japan, Chairman of Kyushu Branch of SICE and General Chair of many international conferences held in Japan, Korea, Chin and India. In 1994, he was awarded SICE Fellow for his contributions to the field of measurement and control engineering through his various academic activities. He also received the Gold Medal Prize at ICAUTO’95 held in India. In 1997, he received the “Best Book Award” from SICE for his new book entitled “M-sequence and its application” written in Japanese and published in 1996 by Shoukoudou Publishing Co. in Japan. In 1999, he received the “Best Paper Award” from SICE for his paper “M-transform and its application to system identification”. His research interests include signal processing and applications, especially pseudorandom sequence and its applications to measurement and control engineering. 展开更多
关键词 model predictive control Volterra series process control nonlinear control
在线阅读 下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
10
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
在线阅读 下载PDF
Stability Analysis of Nonlinear Networked Control System with Integral Quadratic Constraints Performance in Takagi-Sugeno Fuzzy Model 被引量:2
11
作者 PENG Gaofeng LIU Hongping +2 位作者 LENG Yang WANG Yong ZHAO Na 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第5期435-441,共7页
This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By ... This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By using input-delay and parallel distributed compensation(PDC) techniques, we establish the Takagi-Sugeno(T-S) fuzzy model for the system, in which the sampling period of the sampler and signal transmission delay are transformed to the refreshing interval of a zero-order holder(ZOH). By the appropriate Lyapunov-Krasovskii-based methods, a delay-dependent criterion is derived to ensure the asymptotic stability for the system with IQC performance via the H∞ state feedback control. The efficiency of the method is illustrated on a simulation exampler. 展开更多
关键词 H∞ OUTPUT tracking control nonlinear NETWORKED control systems TAKAGI-SUGENO FUZZY model LyapunovKrasovskii method
原文传递
Nonlinear Modeling and Identification of the Electro-hydraulic Control System of an Excavator Arm Using BONL Model 被引量:2
12
作者 YAN Jun LI Bo +2 位作者 GUO Gang ZENG Yonghua ZHANG Meijun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1212-1221,共10页
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based o... Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis. 展开更多
关键词 electro-hydraulic control system BACKLASH Pseudo-Hammerstein-Wiener model nonlinear identification recursive least square algorithm
在线阅读 下载PDF
Model algorithm control using neural networks for input delayed nonlinear control system 被引量:2
13
作者 Yuanliang Zhang Kil To Chong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期142-150,共9页
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ... The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems. 展开更多
关键词 model algorithm control neural network nonlinear system time delay
在线阅读 下载PDF
Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system 被引量:3
14
作者 Lukuan Yang Wenqi Zhong +2 位作者 Li Sun Xi Chen Yingjuan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期832-845,共14页
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W... Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems. 展开更多
关键词 Wet limestone flue gas desulphurization(WFGD)system modelING nonlinear model predictive control(NMPC) Multi-objective optimization
在线阅读 下载PDF
Model predictive control synthesis algorithm based on polytopic terminal region for Hammerstein-Wiener nonlinear systems 被引量:2
15
作者 李妍 陈雪原 毛志忠 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2028-2034,共7页
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ... An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm. 展开更多
关键词 Hammerstein-Wiener nonlinear systems model predictive control polytopic terminal constraint set parameter-correlation nonlinear control stability linear matrix inequalities (LMIs)
在线阅读 下载PDF
Adaptive control of a class of nonlinear time-varying systems with multiple models 被引量:2
16
作者 Koshy GEORGE Karpagavalli SUBRAMANIAN 《Control Theory and Technology》 EI CSCD 2016年第4期323-334,共12页
The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper.Since satisfactory transient performance is an important factor,multiple models are requir... The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper.Since satisfactory transient performance is an important factor,multiple models are required as these parameters change abruptly in the parameter space.In this paper we consider both the multiple models with switching and tuning methodology as well as multiple models with second level adaptation for this class of systems.We demonstrate that the latter approach is better than the former. 展开更多
关键词 nonlinear time-varying systems adaptive control multiple models
原文传递
Adaptive robust control of soft bending actuators:an empirical nonlinear model-based approach 被引量:2
17
作者 Cong CHEN Jun ZOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2021年第9期681-694,共14页
Soft robotics,compared with their rigid counterparts,are able to adapt to uncharted environments,are superior in safe human-robot interactions,and have low cost,owing to the native compliance of the soft materials.How... Soft robotics,compared with their rigid counterparts,are able to adapt to uncharted environments,are superior in safe human-robot interactions,and have low cost,owing to the native compliance of the soft materials.However,customized complex structures,as well as the nonlinear and viscoelastic soft materials,pose a great challenge to accurate modeling and control of soft robotics,and impose restrictions on further applications.In this study,a unified modeling strategy is proposed to establish a complete dynamic model of the most widely used pneumatic soft bending actuator.First,a novel empirical nonlinear model with parametric and nonlinear uncertainties is identified to describe the nonlinear behaviors of pneumatic soft bending actuators.Second,an inner pressure dynamic model of a pneumatic soft bending actuator is established by introducing a modified valve flow rate model of the unbalanced pneumatic proportional valves.Third,an adaptive robust controller is designed using a backstepping method to handle and update the nonlinear and uncertain system.Finally,the experimental results of comparative trajectory tracking control indicate the validity of the proposed modeling and control method. 展开更多
关键词 Pneumatic soft bending actuator Empirical nonlinear model identification Unbalanced pneumatic proportional valve modeling Adaptive robust control Trajectory tracking
原文传递
A Dual-mode Nonlinear Model Predictive Control with the Enlarged Terminal Constraint Sets 被引量:16
18
作者 ZOU Tao LI Shao-Yuao DING Bao-Cang 《自动化学报》 EI CSCD 北大核心 2006年第1期21-27,共7页
Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain sch... Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain schedule. Local LQR control laws and the corresponding maximum control invariant sets can be designed for finite equilibrium points. It is guaranteed that control invariant sets are overlapped each other. The union of the control invariant sets is treated as the terminal constraint set of predictive control. The feasibility and stability of the novel dual-mode model predictive control are investigated with both variable and fixed horizon. Because of the introduction of extended terminal constrained set, the feasibility of optimization can be guaranteed with short prediction horizon. In this way, the size of the optimization problem is reduced so it is computationally efficient. Finally, a simulation example illustrating the algorithm is presented. 展开更多
关键词 不变量集 非线性模型 预先控制 非线性约束系统 增益表
在线阅读 下载PDF
Support Vector Machine-Based Nonlinear System Modeling and Control 被引量:1
19
作者 张浩然 韩正之 +1 位作者 冯瑞 于志强 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期53-58,共6页
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base... This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness. 展开更多
关键词 Support vector machine Statistical learning theory nonlinear systems modeling and control.
在线阅读 下载PDF
Multi-objective nonlinear model predictive control through switching cost functions and its applications to chemical processes 被引量:1
20
作者 何德峰 余世明 俞立 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1662-1669,共8页
This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satis... This paper proposes a switching multi-objective model predictive control(MOMPC) algorithm for constrained nonlinear continuous-time process systems.Different cost functions to be minimized in MPC are switched to satisfy different performance criteria imposed at different sampling times.In order to ensure recursive feasibility of the switching MOMPC and stability of the resulted closed-loop system,the dual-mode control method is used to design the switching MOMPC controller.In this method,a local control law with some free-parameters is constructed using the control Lyapunov function technique to enlarge the terminal state set of MOMPC.The correction term is computed if the states are out of the terminal set and the free-parameters of the local control law are computed if the states are in the terminal set.The recursive feasibility of the MOMPC and stability of the resulted closed-loop system are established in the presence of constraints and arbitrary switches between cost functions.Finally,implementation of the switching MOMPC controller is demonstrated with a chemical process example for the continuous stirred tank reactor. 展开更多
关键词 nonlinear system model predictive control Multi-objective control Switched control Continuous stirred tank reactor
在线阅读 下载PDF
上一页 1 2 90 下一页 到第
使用帮助 返回顶部