This paper gives a class of descent methods for nonlinear least squares solution. A class of updating formulae is obtained by using generalized inverse matrices. These formulae generate an approximation to the second ...This paper gives a class of descent methods for nonlinear least squares solution. A class of updating formulae is obtained by using generalized inverse matrices. These formulae generate an approximation to the second part of the Hessian matrix of the objective function, and are updated in such a way that the resulting approximation to the whole Hessian matrix is the convex class of Broyden-like up-dating formulae. It is proved that the proposed updating formulae are invariant under linear transformation and that the class of factorized quasi-Newton methods are locally and superlinearly convergent. Numerical results are presented and show that the proposed methods are promising.展开更多
Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad appl...Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad applications in practice. Most existing algorithms for this kind of problems are derived from the variable projection method proposed by Golub and Pereyra, which utilizes the separability under a separate framework. However, the methods based on variable projection strategy would be invalid if there exist some constraints to the variables, as the real problems always do, even if the constraint is simply the ball constraint. We present a new algorithm which is based on a special approximation to the Hessian by noticing the fact that certain terms of the Hessian can be derived from the gradient. Our method maintains all the advantages of variable projection based methods, and moreover it can be combined with trust region methods easily and can be applied to general constrained separable nonlinear problems. Convergence analysis of our method is presented and numerical results are also reported.展开更多
The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. Th...The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.展开更多
文摘This paper gives a class of descent methods for nonlinear least squares solution. A class of updating formulae is obtained by using generalized inverse matrices. These formulae generate an approximation to the second part of the Hessian matrix of the objective function, and are updated in such a way that the resulting approximation to the whole Hessian matrix is the convex class of Broyden-like up-dating formulae. It is proved that the proposed updating formulae are invariant under linear transformation and that the class of factorized quasi-Newton methods are locally and superlinearly convergent. Numerical results are presented and show that the proposed methods are promising.
基金Chinese NSF grant 10231060the CAS Knowledge Innovation Program
文摘Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad applications in practice. Most existing algorithms for this kind of problems are derived from the variable projection method proposed by Golub and Pereyra, which utilizes the separability under a separate framework. However, the methods based on variable projection strategy would be invalid if there exist some constraints to the variables, as the real problems always do, even if the constraint is simply the ball constraint. We present a new algorithm which is based on a special approximation to the Hessian by noticing the fact that certain terms of the Hessian can be derived from the gradient. Our method maintains all the advantages of variable projection based methods, and moreover it can be combined with trust region methods easily and can be applied to general constrained separable nonlinear problems. Convergence analysis of our method is presented and numerical results are also reported.
基金Supported by the National Natural Science Foundation of China (40174003)
文摘The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.