期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
量子核判别分析算法
1
作者 康榕乘 余凯 +2 位作者 张新 林崧 郭躬德 《郑州大学学报(理学版)》 CAS 北大核心 2025年第1期61-66,共6页
核判别分析法通过核函数扩展了线性判别分析对非线性数据的处理能力,成为模式识别领域中一个重要的分支。然而,随着数据的指数增长,经典核判别分析算法在提取特征时会消耗大量计算资源。针对这一问题,利用量子叠加性和并行性提出了一种... 核判别分析法通过核函数扩展了线性判别分析对非线性数据的处理能力,成为模式识别领域中一个重要的分支。然而,随着数据的指数增长,经典核判别分析算法在提取特征时会消耗大量计算资源。针对这一问题,利用量子叠加性和并行性提出了一种量子核判别分析算法。首先,借助量子随机存储器技术与控制旋转操作构造需要的类间矩阵和类内矩阵所对应的密度算子;然后,融入线性方程的求解思路并行获取特征态。理论分析表明,所提算法与经典算法相比具有指数级加速。 展开更多
关键词 量子机器学习 非线性判别分析 核函数 特征提取 量子厄米特链积 相位估计
在线阅读 下载PDF
一种基于核函数的函数型数据非参数回归方法 被引量:1
2
作者 柳心阳 李秀英 耿发展 《常熟理工学院学报》 2025年第2期103-106,共4页
函数型数据分析因其在不同领域的广泛应用而受到统计学习的广泛关注,现有的函数型数据回归方法大多集中在线性模型上,非线性函数型数据回归的相关研究较少.本文基于再生核函数提出一种新的函数型数据非参数回归方法,并通过数值实验验证... 函数型数据分析因其在不同领域的广泛应用而受到统计学习的广泛关注,现有的函数型数据回归方法大多集中在线性模型上,非线性函数型数据回归的相关研究较少.本文基于再生核函数提出一种新的函数型数据非参数回归方法,并通过数值实验验证了所提出的方法的有效性和鲁棒性. 展开更多
关键词 函数型数据分析 非线性回归方法 核方法 非参数回归
在线阅读 下载PDF
基于核主成分分析法的船舶中央冷却器状态评估
3
作者 吴小豪 邹永久 刘军朴 《舰船科学技术》 北大核心 2025年第9期65-71,共7页
为实现船舶系统及设备的实时状态评估,基于船舶实际运行故障数据不易获得、数据结构非线性、数据量巨大以及噪声多等特征,本文采用核主成分分析法,以船舶中央冷却器为例,选择高斯核函数及不同核参数,仅利用高维的正常运行数据,在特征空... 为实现船舶系统及设备的实时状态评估,基于船舶实际运行故障数据不易获得、数据结构非线性、数据量巨大以及噪声多等特征,本文采用核主成分分析法,以船舶中央冷却器为例,选择高斯核函数及不同核参数,仅利用高维的正常运行数据,在特征空间中建立相应的核主成分评估模型,并对异常运行数据进行评估分析。评估结果表明,在合适的核参数下,核主成分分析法无需深入分析中央冷却器的结构与原理,即可快速有效地区分其非线性结构的正常运行数据和异常运行数据,其准确率优于常规主成分分析法,且其倒V字型的评估输出特性辨识度高,对微小故障较为敏感,非常适合用于突发性故障的早期识别。对于船舶机械设备而言,具有重要的工程实际应用意义。 展开更多
关键词 状态评估 核主成分分析法 核函数 非线性结构 突发性故障
在线阅读 下载PDF
基于方向回归的高维非参数非线性系统 变量选择及辨识
4
作者 孙兵 程长明 +2 位作者 蔡巧言 彭志科 张涛 《动力学与控制学报》 2025年第5期52-58,共7页
变量选择问题在诸多领域中被广泛研究,人们发展出了许多变量选择方法.然而,有些变量选择算法存在计算耗时问题,有些算法在检测变量是否有贡献时仅能提供必要条件,无法提供充分必要条件.本文基于方向回归提出了一种新的高维非参数非线性... 变量选择问题在诸多领域中被广泛研究,人们发展出了许多变量选择方法.然而,有些变量选择算法存在计算耗时问题,有些算法在检测变量是否有贡献时仅能提供必要条件,无法提供充分必要条件.本文基于方向回归提出了一种新的高维非参数非线性系统变量选择算法,其假设要求更低,计算复杂度大幅降低,性能优于现有的变量选择算法;且为检验变量是否对系统有贡献提供了充分必要条件.此外,由于检测变量是否有贡献的指标并不是精确的0,因此当指标较小时,很难判断变量是否冗余.为解决这一问题,本文提出了一种惩罚优化算法,以确保集合的收敛性.仿真算例验证了所提变量选择方法的有效性. 展开更多
关键词 变量选择 非线性系统辨识 方向回归 核函数 非参数系统
在线阅读 下载PDF
基于GRAM矩阵的粒感知机
5
作者 吴少华 陈玉明 《计算机科学》 北大核心 2025年第S2期664-670,共7页
感知机是一种简单的线性分类器,也是SVM及深度学习的基石。然而,大部分复杂问题是非线性模型,感知机在处理这类问题时,分类效果不佳。因此,引入粒计算理论,以参考样本为模板,将训练样本粒化为特征粒子及特征粒向量,进而定义粒GRAM矩阵,... 感知机是一种简单的线性分类器,也是SVM及深度学习的基石。然而,大部分复杂问题是非线性模型,感知机在处理这类问题时,分类效果不佳。因此,引入粒计算理论,以参考样本为模板,将训练样本粒化为特征粒子及特征粒向量,进而定义粒GRAM矩阵,提出一种基于GRAM矩阵的粒感知机模型。该模型优化感知机的对偶形式,构造新的粒感知机模型。为处理非线性分类问题,引入核函数,构造基于粒向量的核GRAM矩阵,并给出GRAM粒感知机的损失函数和学习方法。最后,从收敛性、非线性处理能力、参考样本的数量以及模型分类效果4方面进行实验分析,结果表明了GRAM粒感知机的有效性与正确性。 展开更多
关键词 粒计算 感知机 GRAM矩阵 非线性分类 核函数
在线阅读 下载PDF
高精度温度传感器温漂误差非线性校正方法
6
作者 张晓娟 张婷 樊东燕 《传感技术学报》 北大核心 2025年第5期788-793,共6页
温度传感器的温漂误差会随着温度变化逐渐累积,导致温度测量结果与实际温度之间存在较大的偏差,影响温度传感器测量的准确性。因此,提出一种基于SVM回归校正算法的传感器温漂误差非线性校正方法。建立传感器温度变化函数,求得温漂与其... 温度传感器的温漂误差会随着温度变化逐渐累积,导致温度测量结果与实际温度之间存在较大的偏差,影响温度传感器测量的准确性。因此,提出一种基于SVM回归校正算法的传感器温漂误差非线性校正方法。建立传感器温度变化函数,求得温漂与其他参数间线性和非线性变化关系,由此建立SVM回归校正空间,设定温漂观测序列,按照时间将序列中各个点映射到校正空间中,定义温漂误差的极小目标函数,采用拉格朗日函数将非线性校正问题转化为对偶优化问题,再引入点积核函数进行相应操作,实现误差非线性校正。实验结果表明,校正后的温漂误差校正结果与真实温度拟合度较为接近,且校正后的温漂误差在0.05以内,校正精准度较高,具有一定的实用价值。 展开更多
关键词 温度传感器 非线性校正 回归校正算法 支持向量机 拉格朗日函数 核函数
在线阅读 下载PDF
一种基于核函数的非线性感知器算法 被引量:24
7
作者 许建华 张学工 李衍达 《计算机学报》 EI CSCD 北大核心 2002年第7期689-695,共7页
为了提高经典 Rosenblatt感知器算法的分类能力 ,该文提出一种基于核函数的非线性感知器算法 ,简称核感知器算法 ,其特点是用简单的迭代过程和核函数来实现非线性分类器的一种设计 .核感知器算法能够处理原始属性空间中线性不可分问题... 为了提高经典 Rosenblatt感知器算法的分类能力 ,该文提出一种基于核函数的非线性感知器算法 ,简称核感知器算法 ,其特点是用简单的迭代过程和核函数来实现非线性分类器的一种设计 .核感知器算法能够处理原始属性空间中线性不可分问题和高维特征空间中线性可分问题 .同时 ,文中详细分析了其算法与径向基函数神经网络、势函数方法和支持向量机等非线性算法的关系 .人工和实际数据的计算结果表明 :与线性感知器算法相比 ,核感知器算法可以有效地提高分类精度 . 展开更多
关键词 核函数 非线性感知器算法 支持向量机 机器学习 人工神经网络
在线阅读 下载PDF
基于小波支持向量机的非线性组合预测方法研究 被引量:27
8
作者 李元诚 李波 方廷健 《信息与控制》 CSCD 北大核心 2004年第3期303-306,324,共5页
基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构... 基于支持向量机(SVM)核方法和小波框架理论,提出了一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的新的机器学习方法,并把这种方法应用于组合预测,得到了一种基于WSVM的非线性组合预测新模型,然后给出了此模型的结构设计和实现算法.通过仿真实验,把该方法与小波神经网络等方法相比较,得到了更好的实验结果,从而验证了该方法的正确性和有效性. 展开更多
关键词 小波 支持向量机 核函数 非线性组合预测
在线阅读 下载PDF
最小二乘支持向量机在信道均衡中的应用 被引量:5
9
作者 王安义 郭世坤 《西安科技大学学报》 CAS 2014年第5期591-595,共5页
为抵消信道时变多径传播特性引起的码间干扰、准确地识别数字通信系统中的发送信号,满足信道均衡的实时性要求,采用最小二乘支持向量机回归算法对信道进行均衡。首先,分析了最小二乘支持向量机算法应用于信道均衡的机理,与传统的信道均... 为抵消信道时变多径传播特性引起的码间干扰、准确地识别数字通信系统中的发送信号,满足信道均衡的实时性要求,采用最小二乘支持向量机回归算法对信道进行均衡。首先,分析了最小二乘支持向量机算法应用于信道均衡的机理,与传统的信道均衡方法相比,该算法无需对信道进行估计可直接得到均衡器的参数。其次,与ε-支持向量机算法进行比较,最小二乘支持向量机均衡性能不减,时间复杂度大大降低,可以更好的满足信道更新的实时性要求。同时探讨了2种改善低信噪比下信道均衡性能的方法。结果表明:对于信道环境复杂的通信系统,利用最小二乘支持向量机的非线性均衡速度快、效果良好。在低信噪比情况下,可以通过增加训练序列长度和利用非线性核函数来改善信道均衡的性能。 展开更多
关键词 最小二乘支持向量机 信道均衡 非线性 核函数
在线阅读 下载PDF
基于地震数据子集的波形反演思路、方法与应用 被引量:17
10
作者 董良国 黄超 +1 位作者 迟本鑫 刘玉柱 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2015年第10期3735-3745,共11页
地震数据与地下介质物性参数之间的复杂关系,决定了地震全波形反演在理论方法上面临着强烈的非线性难题.地下不同物性参数的不同分量在地震数据上具有不同的表现,勘探的不同阶段对地下介质模型的精度也具有不同的要求,这就决定了在地震... 地震数据与地下介质物性参数之间的复杂关系,决定了地震全波形反演在理论方法上面临着强烈的非线性难题.地下不同物性参数的不同分量在地震数据上具有不同的表现,勘探的不同阶段对地下介质模型的精度也具有不同的要求,这就决定了在地震全波形反演过程中不必时刻追求地震数据全部信息的匹配,部分信息的匹配就有可能解决现阶段的某些问题,还可以一定程度上规避匹配全部地震信息所遇到的强烈非线性难题.基于这样的考虑,我们提出了利用地震数据子集进行波形反演的思路,给出了统一的反演方法,并通过基于包络数据子集以及反射波数据子集的波形反演的理论模型与实际资料反演试验,证明了所提出的波形反演思路和方法的正确性. 展开更多
关键词 全波形反演 波形反演 地震数据子集 非线性 目标函数 核函数
在线阅读 下载PDF
非线性格兰杰因果关系在计算神经科学的应用 被引量:2
11
作者 王一夫 陈松乔 《计算机工程与应用》 CSCD 北大核心 2007年第36期48-50,共3页
自从格兰杰1969年提出因果关系的概念之后,格兰杰因果关系的应用越来越广泛,但都是用来分析线性时间序列数据之间的内在联系。将线性格兰杰因果关系推广到非线性的情形,首先利用核函数的方法建立非线性时间序列模型,再按照线性格兰杰因... 自从格兰杰1969年提出因果关系的概念之后,格兰杰因果关系的应用越来越广泛,但都是用来分析线性时间序列数据之间的内在联系。将线性格兰杰因果关系推广到非线性的情形,首先利用核函数的方法建立非线性时间序列模型,再按照线性格兰杰因果关系的基本思想定义非线性格兰杰因果关系,最后通过一个模拟的例子验证该方法的有效性。模拟数据的结果表明,该方法能有效地分析非线性数据之间的内在联系。 展开更多
关键词 格兰杰因果关系 非线性 核函数 时间序列
在线阅读 下载PDF
Volterra核函数在齿轮裂纹故障识别上的应用 被引量:5
12
作者 吴莎 高永生 谢文强 《河北科技大学学报》 CAS 北大核心 2010年第6期538-541,共4页
针对非线性条件下齿轮裂纹故障信号微弱以及受输入量变化的影响,进而给故障精准度带来的严峻考验,提出利用二阶Volterra核函数从系统整体角度分析裂纹故障与非线性因素变化之间的内在联系。利用时间序列辨识齿轮裂纹故障二阶Volterra核... 针对非线性条件下齿轮裂纹故障信号微弱以及受输入量变化的影响,进而给故障精准度带来的严峻考验,提出利用二阶Volterra核函数从系统整体角度分析裂纹故障与非线性因素变化之间的内在联系。利用时间序列辨识齿轮裂纹故障二阶Volterra核函数,分析谱图中反映齿轮运行状态的非线性信息。结果表明:二阶Volterra核函数考虑了输入因素对系统诊断精度的影响,对齿轮箱因工况改变而引起的非线性因素的变化反映十分敏感,从而解决了传统齿轮边频带故障诊断理论的模糊性和不确定性问题,可以将其应用于齿轮裂纹故障诊断。 展开更多
关键词 VOLTERRA 核函数 非线性 齿轮裂纹 故障诊断
在线阅读 下载PDF
系统辨识中支持向量机核函数及其参数的研究 被引量:80
13
作者 荣海娜 张葛祥 金炜东 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第11期3204-3208,3226,共6页
具有不同核函数和参数的支持向量机(SVM)的性能存在很大差异,核函数及其参数的选择是SVM应用和理论研究中的一个重要问题。在简要介绍非线性系统辨识的支持向量机方法后,重点对常用的核函数及其参数的选择进行了研究,并采用具有不同核... 具有不同核函数和参数的支持向量机(SVM)的性能存在很大差异,核函数及其参数的选择是SVM应用和理论研究中的一个重要问题。在简要介绍非线性系统辨识的支持向量机方法后,重点对常用的核函数及其参数的选择进行了研究,并采用具有不同核函数的SVM进行非线性系统辨识。大量实验结果表明,采用SVM方法进行系统辨识时,径向基核函数(RBKF)比其它核函数的辨识效果好,且RBKF的参数选择较容易,当参数在有效范围内改变时,空间复杂度变化小,易于实现。因此,RBKF是系统辨识SVM的较好选择。 展开更多
关键词 支持向量机 核函数 系统辨识 非线性系统
在线阅读 下载PDF
Volterra高阶核新算法在涡轮转速控制上的应用 被引量:2
14
作者 段哲民 司伟 王海涛 《火力与指挥控制》 CSCD 北大核心 2010年第3期102-105,113,共5页
给出了对非线性动态系统做任意精度逼近的Volterra级数高阶核的全新估算方法并将其应用于涡喷发动机的转速控制上。该方法在核函数理论基础上,构造线性空间,将求解Volterra级数各阶核的问题转化为求输出观测向量在希尔伯特空间中某一子... 给出了对非线性动态系统做任意精度逼近的Volterra级数高阶核的全新估算方法并将其应用于涡喷发动机的转速控制上。该方法在核函数理论基础上,构造线性空间,将求解Volterra级数各阶核的问题转化为求输出观测向量在希尔伯特空间中某一子空间上的投影的问题,使原本复杂的非线性系统的Volterra级数的逼近问题在线性空间中以向量内积的方式得到解决。与其他时域或频域估算Volterra核的方法相比较,该算法的优点在于理论体系严密、计算量不随阶数增高而成几何级数增加、辨识精度高。该方法理论上能够估算任意阶核,弥补了现有方法难以估算四阶以上核的缺点,可应用于动态系统和强非线性系统的建模。将发动机动态过程描述为四阶的Volterra级数模型。 展开更多
关键词 非线性 VOLTERRA级数 泛函 涡轮
在线阅读 下载PDF
基于核函数的非线性分类相关分析及其在化学模式识别中的应用 被引量:5
15
作者 陶少辉 陈德钊 +1 位作者 胡望明 许光 《分析化学》 SCIE EI CAS CSCD 北大核心 2005年第1期50-53,共4页
与统计分析和神经网络相比,基于结构风险最小的支持向量机有更好的分类性能。它用于非线性分类时,先将样本映射到更高维的特征空间,往往会增加复共线性与冗余信息,将影响样本分布,降低线性支持向量机分类器(LSVC)的预测性能。本研究提... 与统计分析和神经网络相比,基于结构风险最小的支持向量机有更好的分类性能。它用于非线性分类时,先将样本映射到更高维的特征空间,往往会增加复共线性与冗余信息,将影响样本分布,降低线性支持向量机分类器(LSVC)的预测性能。本研究提出非线性分类相关分析算法 (NLCCA),利用核函数技术,无需了解非线性映射的算式,从特征空间的样本映像中提取分类相关成分,以消除冗余信息,改善样本分布。由此构建的NLCCA LSVC集成分类器具有优良的预测性能。经模拟数据的测试,并实际用于两个复杂的化学模式识别问题,均取得令人满意的效果,也印证了算法的有效性。 展开更多
关键词 分类器 支持向量机 特征空间 核函数 预测性能 算法 高维 化学模式识别 样本 效果
在线阅读 下载PDF
基于核函数的SOM网络流量分类方法 被引量:5
16
作者 胡婷 王勇 陶晓玲 《计算机工程与设计》 CSCD 北大核心 2011年第4期1195-1198,共4页
由于网络流量数据高度非线性,传统的自组织映射(self-organizing maps,SOM)网络对此分类的鲁棒性和可靠性较差,提出了一种基于核函数的SOM(kernel SOM,KSOM)网络流量分类方法。该方法用核函数代替原始数据在特征空间中映射值的内积,使... 由于网络流量数据高度非线性,传统的自组织映射(self-organizing maps,SOM)网络对此分类的鲁棒性和可靠性较差,提出了一种基于核函数的SOM(kernel SOM,KSOM)网络流量分类方法。该方法用核函数代替原始数据在特征空间中映射值的内积,使输入空间中复杂的流量样本结构在特征空间中得到简化,实现对有多个统计特征属性的网络流量在应用层的分类。实验结果表明,KSOM能识别新应用类型的流量,较传统的SOM更适合对网络流量进行分类,其分类准确率高于NB方法。 展开更多
关键词 自组织映射网络 核函数 非线性 网络流量 分类
在线阅读 下载PDF
地下水动态水位预测的非线性PLSR方法 被引量:4
17
作者 刘玉邦 梁川 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第13期127-130,共4页
为解决目前有关地下水动态变化研究方法中存在的诸多不足,采用非线性偏最小二乘回归(PLSR)分析方法。该方法首先对原自变量的每一维进行非线性变换,然后对因变量和新的自变量应用单因变量PLSR的简化算法进行回归求参,最后将回归系数通... 为解决目前有关地下水动态变化研究方法中存在的诸多不足,采用非线性偏最小二乘回归(PLSR)分析方法。该方法首先对原自变量的每一维进行非线性变换,然后对因变量和新的自变量应用单因变量PLSR的简化算法进行回归求参,最后将回归系数通过逆变换代回到原来的变换式中,并最终求得原自变量和因变量的预测关系式。应用实例表明,建议方法将偏最小二乘方法和非线性元素有效地结合起来,可有效解决具有复杂非平稳动态特性的地下水动态水位预测问题,而且模型构建简单,计算简便,预测精度也有一定的提高。 展开更多
关键词 地下水 水位预测 偏最小二乘回归 非线性变换 高斯核函数
原文传递
基于核函数距离测度的LLE降维及其在离群聚类中的应用 被引量:5
18
作者 徐雪松 张宏 刘凤玉 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第9期1996-2000,共5页
局部线性嵌入算法(locally linear embedding,LLE)是一种流形降维方法,在高维稀疏数据空间中,针对LLE不适合稀疏采样和欧氏距离公式的缺陷,研究该算法的扩展,引入核函数,并将样本映射到高维特征空间,核映射改善了样本的空间分布,改进的... 局部线性嵌入算法(locally linear embedding,LLE)是一种流形降维方法,在高维稀疏数据空间中,针对LLE不适合稀疏采样和欧氏距离公式的缺陷,研究该算法的扩展,引入核函数,并将样本映射到高维特征空间,核映射改善了样本的空间分布,改进的LLE方法在适当选取近邻点个数情况下,可得到良好的效果。对从高维采样数据中恢复得到低维数据集,通过本文提出的离群数据假设,并结合本文给出的离群聚类方法对所得低维数据是否是离群数据进行判别。仿真文验的结果表明了该方法能够有效地发现高维数据集中的离群点,与此同时,该算法具有参数估计简单、参数影响不大等优点,该算法为离群点检测问题的机器学习提供了一条新的途径。 展开更多
关键词 核函数 维数消减 非线性数据集 离群数据 聚类
在线阅读 下载PDF
高光谱图像非线性解混方法的研究进展 被引量:16
19
作者 唐晓燕 高昆 倪国强 《遥感技术与应用》 CSCD 北大核心 2013年第4期731-738,共8页
由于空间分辨率的限制,高光谱遥感图像中存在大量混合像元,对混合像元的解混是实现地物精确分类和识别的前提。与传统的线性解混方法相比,非线性解混方法在寻找组成混合像元的端元以及每个端元的丰度时具有较高的精度。分析了光谱非线... 由于空间分辨率的限制,高光谱遥感图像中存在大量混合像元,对混合像元的解混是实现地物精确分类和识别的前提。与传统的线性解混方法相比,非线性解混方法在寻找组成混合像元的端元以及每个端元的丰度时具有较高的精度。分析了光谱非线性混合的原理,总结了近年来提出的非线性解混算法,重点对双线性模型、神经网络、基于核函数的非线性解混算法以及基于流形学习的非线性解混算法进行了介绍和分析。最后总结了混合像元非线性解混未来发展的趋势。 展开更多
关键词 混合像元 非线性解混 双线性模型 神经网络 核函数 流形学习
原文传递
基于非线性频谱特征及核主元分析的模拟电路故障诊断方法 被引量:17
20
作者 韩海涛 马红光 +1 位作者 曹建福 张家良 《电工技术学报》 EI CSCD 北大核心 2012年第8期248-254,共7页
针对模拟电路基于非线性输出频域响应函数(NOFRF)模型进行故障特征提取时,具有维数多、数据量大的特点,提出了采用核主元分析(KPCA)和多类别支持向量机(MSVM)进行故障模式判别的新方法(KPCA-MSVM)。该方法首先采用KPCA对特征向量进行维... 针对模拟电路基于非线性输出频域响应函数(NOFRF)模型进行故障特征提取时,具有维数多、数据量大的特点,提出了采用核主元分析(KPCA)和多类别支持向量机(MSVM)进行故障模式判别的新方法(KPCA-MSVM)。该方法首先采用KPCA对特征向量进行维数压缩、消除变量之间的非线性;其次构造MSVM分类器,在PSpice环境下通过蒙特卡罗仿真生成模拟电路在各种故障状态下的数据,对MSVM分类器进行训练,将训练好的MSVM分类器用于模拟电路的故障状态识别。通过对Sallen-Key带通滤波器模拟电路的故障诊断结果表明,该故障诊断方法对模拟电路参数型故障有很好的识别、定位能力并具有速度快和准确率高的特点。 展开更多
关键词 非线性输出频域响应函数 核主元分析 支持向量机 故障特征 故障诊断
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部