Traditionally, extra binary variables are demanded to formulate a fuzzy nonlinear programming(FNLP) problem with piecewise linear membership functions(PLMFs). However, this kind of methodology usually suffers increasi...Traditionally, extra binary variables are demanded to formulate a fuzzy nonlinear programming(FNLP) problem with piecewise linear membership functions(PLMFs). However, this kind of methodology usually suffers increasing computational burden associated with formulation and solution, particularly in the face of complex PLMFs. Motivated by these challenges, this contribution introduces a novel approach free of additional binary variables to formulate FNLP with complex PLMFs, leading to superior performance in reducing computational complexity as well as simplifying formulation. A depth discussion about the approach is conducted in this paper, along with a numerical case study to demonstrate its potential benefits.展开更多
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car...Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach.展开更多
文摘Traditionally, extra binary variables are demanded to formulate a fuzzy nonlinear programming(FNLP) problem with piecewise linear membership functions(PLMFs). However, this kind of methodology usually suffers increasing computational burden associated with formulation and solution, particularly in the face of complex PLMFs. Motivated by these challenges, this contribution introduces a novel approach free of additional binary variables to formulate FNLP with complex PLMFs, leading to superior performance in reducing computational complexity as well as simplifying formulation. A depth discussion about the approach is conducted in this paper, along with a numerical case study to demonstrate its potential benefits.
基金the National Special Fund for Agro-scientific Research in the Public Interest(No.201003024)
文摘Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach.