With the continuous evolution of urban surface types,the impact of the urban heat island effect on the human population has intensified.Investigating the factors influencing urban thermal environments is crucial for p...With the continuous evolution of urban surface types,the impact of the urban heat island effect on the human population has intensified.Investigating the factors influencing urban thermal environments is crucial for providing theoretical support to urban planning and decision-making.In this study,Shenyang was selected to comprehensively analyse multiple factors,including topography,human activity,vegetation and landscape.Moreover,we used the random forest algorithm to explore nonlinear factors influencing land surface temperature(LST)over four years in the study area.The results revealed that from 2005 to 2020,the total areas with sub-high and high-temperature zones in northern Shenyang steadily increased.The area ratio of these zones increased from 20.18% in 2005 to 24.86% in 2020.Additionally,significant and strong correlations were observed between LST and variables such as the enhanced vegetation index(EVI),normalised difference vegetation index(NDVI),population density,proportion of cropland and proportion of impervious land.In 2010,proportion of impervious land exhibited the strongest correlation with LST at the 5 km scale,reaching 0.852(p<0.01).The 4 km grid scale was identified as the optimal grid size for this study,while the 2 km grid performed the worst.In 2020,NDVI emerged as the most significant factor influencing LST.These findings provide valuable guidance for improving urban planning and developing sustainable strategies.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
Different values have been assigned to the ratio of the defl ection amplifi cation factor(Cd) to the response modifi cation factor(R) for a specifi ed force-resisting system in the seismic design provisions while the ...Different values have been assigned to the ratio of the defl ection amplifi cation factor(Cd) to the response modifi cation factor(R) for a specifi ed force-resisting system in the seismic design provisions while the same application is defi ned for it. An analytical study of the seismic responses of several reinforced concrete frames subjected to a suite of earthquake records performed in this research indicate that the stories’ overstrength and stiffness distribution along the structural height can affect local defl ections more than global ones. Therefore, the Cd/R ratio is calculated based on the ratio of both maximum inelastic to maximum elastic displacements and interstory drifts. Due to damage concentration in some specifi c stories, the defl ection amplifi cation factor calculated based on inelastic interstory drifts was larger than that of the inelastic displacements. Consequently, a minimum value of 1.0 is recommended for the Cd/R ratio in order to estimate maximum inelastic drifts. The ratio of inelastic to elastic displacement was generally found to increase slightly along the structural height for the studied RC models. In addition, it was detected that the story damage indices of the studied RC frames decrease when the inverted value of inelastic interstory drift ratios are increased through a(negative) power form.展开更多
Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator,...Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator, coherent states are constructed using Barut–Girardello formalism and their basic properties are discussed. Furthermore, the statistical properties of these states are investigated by means of Mandel parameter and second order correlation function. Moreover,it is shown that in the harmonic limit, all the results obtained for the non-linear oscillator with spatially varying mass reduce to corresponding results of the linear oscillator with constant mass.展开更多
In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is c...In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively.In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized.Finally, the effectiveness of the proposed method is confirmed by numerical simulations.展开更多
In the past,arms used in the fields of industry and robotics have been designed not to vibrate by increasing their mass and stiffness.The weight of arms has tended to be reduced to improve speed of operation,and decre...In the past,arms used in the fields of industry and robotics have been designed not to vibrate by increasing their mass and stiffness.The weight of arms has tended to be reduced to improve speed of operation,and decrease the cost of their production.Since the weight saving makes the arms lose their stiffness and therefore vibrate more easily,the vibration suppression control is needed for realizing the above purpose.Incidentally,the use of various smart materials in actuators has grown.In particular,a shape memory alloy(SMA)is applied widely and has several advantages:light weight,large displacement by temperature change,and large force to mass ratio.However,the SMA actuators possess hysteresis nonlinearity between their own temperature and displacement obtained by the temperature.The hysteretic behavior of the SMA actuators affects their control performance.In previous research,an operator-based control system including a hysteresis compensator has been proposed.The vibration of a flexible arm is dealt with as the controlled object;one end of the arm is clamped and the other end is free.The effectiveness of the hysteresis compensator has been confirmed by simulations and experiments.Nevertheless,the feedback signal of the previous designed system has increased exponentially.It is difficult to use the system in the long-term because of the phenomenon.Additionally,the SMA actuator generates and radiates heat because electric current passing through the SMA actuator provides heat,and strain on the SMA actuator is generated.With long-time use of the SMA actuator,the environmental temperature around the SMA actuator varies through radiation of the heat.There exists a risk that the ambient temperature change dealt with as disturbance affects the temperature and strain of the SMA actuator.In this research,a design method of the operator-based control system is proposed considering the long-term use of the system.In the method,the hysteresis characteristics of the SMA actuator and the temperature change around the actuator are considered.The effectiveness of the proposed method is verified by simulations and experiments.展开更多
In this paper,a robust nonlinear free vibration control design using an operator based robust right coprime factorization approach is considered for a flexible plate with unknown input nonlinearity.With considering th...In this paper,a robust nonlinear free vibration control design using an operator based robust right coprime factorization approach is considered for a flexible plate with unknown input nonlinearity.With considering the effect of unknown input nonlinearity from the piezoelectric actuator,operator based controllers are designed to guarantee the robust stability of the nonlinear free vibration control system.Simultaneously,for ensuring the desired tracking performance and reducing the effect of unknown input nonlinearity,operator based tracking compensator and estimation structure are given,respectively.Finally,both simulation and experimental results are shown to verify the effectiveness of the proposed control scheme.展开更多
We investigate the acceleration of an adiabatic process with the same survival probability of the ground state by sweeping a parameter nonlinearly, fast in the wide gap region and slowly in the narrow gap region, in c...We investigate the acceleration of an adiabatic process with the same survival probability of the ground state by sweeping a parameter nonlinearly, fast in the wide gap region and slowly in the narrow gap region, in contrast to the usual linear sweeping. We find the expected acceleration both in the Landau-Zener tunneling model and in the adiabatic quantum computing model for factorizing the number N - 21.展开更多
Theoretical studies so far on random wave groups have all been in Linear ways. Methods to simulate random wave groups, an important subject in ocean engineering, also employ relationship resulting from a Gaussian proc...Theoretical studies so far on random wave groups have all been in Linear ways. Methods to simulate random wave groups, an important subject in ocean engineering, also employ relationship resulting from a Gaussian process. Many filed measurements have shown that the real sea surface displacement deviates somewhat from Gaussian distribution. Tayfun et al, have further depicted in theory that the envelope spectral peak frequency is constantly zero for a Gaussian process which means that the groupiness factors will be constants, too. In this paper, the effect of nonlinearity on groupiness of a random wave field is examined via the theoretical results derived by Tayfun et al. from an expression of amplitude-modulated Stokes waves. When the surface displacement is treated as a non-Gaussian process, it is found that the group height factors GF(1) and GF(2) proposed by Zhao et al. and Yu et al., respectively, depend on a nonlinearity factor as well as a spectrum-bandwidth factor, deferring from the case of a Gaussion process. Comparison between the theoretical results and the field data shows a favorable agreement in consideration of errors from instrumentation and measuring means. The significance of the results is also discussed.展开更多
In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are co...In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are considered in an exterior Omega subset of R-n, where q(x) is allowed to change sign. Some sufficient conditions for any solutions y(x) of (E) to be satisfied liminf\\x\--> infinity \y(x)\ = 0 are obtained. Particularly, these results improve the previous results for second order ordinary differential equations.展开更多
基金National Natural Science Foundation of China,No.42204031。
文摘With the continuous evolution of urban surface types,the impact of the urban heat island effect on the human population has intensified.Investigating the factors influencing urban thermal environments is crucial for providing theoretical support to urban planning and decision-making.In this study,Shenyang was selected to comprehensively analyse multiple factors,including topography,human activity,vegetation and landscape.Moreover,we used the random forest algorithm to explore nonlinear factors influencing land surface temperature(LST)over four years in the study area.The results revealed that from 2005 to 2020,the total areas with sub-high and high-temperature zones in northern Shenyang steadily increased.The area ratio of these zones increased from 20.18% in 2005 to 24.86% in 2020.Additionally,significant and strong correlations were observed between LST and variables such as the enhanced vegetation index(EVI),normalised difference vegetation index(NDVI),population density,proportion of cropland and proportion of impervious land.In 2010,proportion of impervious land exhibited the strongest correlation with LST at the 5 km scale,reaching 0.852(p<0.01).The 4 km grid scale was identified as the optimal grid size for this study,while the 2 km grid performed the worst.In 2020,NDVI emerged as the most significant factor influencing LST.These findings provide valuable guidance for improving urban planning and developing sustainable strategies.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
文摘Different values have been assigned to the ratio of the defl ection amplifi cation factor(Cd) to the response modifi cation factor(R) for a specifi ed force-resisting system in the seismic design provisions while the same application is defi ned for it. An analytical study of the seismic responses of several reinforced concrete frames subjected to a suite of earthquake records performed in this research indicate that the stories’ overstrength and stiffness distribution along the structural height can affect local defl ections more than global ones. Therefore, the Cd/R ratio is calculated based on the ratio of both maximum inelastic to maximum elastic displacements and interstory drifts. Due to damage concentration in some specifi c stories, the defl ection amplifi cation factor calculated based on inelastic interstory drifts was larger than that of the inelastic displacements. Consequently, a minimum value of 1.0 is recommended for the Cd/R ratio in order to estimate maximum inelastic drifts. The ratio of inelastic to elastic displacement was generally found to increase slightly along the structural height for the studied RC models. In addition, it was detected that the story damage indices of the studied RC frames decrease when the inverted value of inelastic interstory drift ratios are increased through a(negative) power form.
文摘Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator, coherent states are constructed using Barut–Girardello formalism and their basic properties are discussed. Furthermore, the statistical properties of these states are investigated by means of Mandel parameter and second order correlation function. Moreover,it is shown that in the harmonic limit, all the results obtained for the non-linear oscillator with spatially varying mass reduce to corresponding results of the linear oscillator with constant mass.
基金supported by the National Natural Science Foundation of China(61203229)
文摘In this paper, operator based robust nonlinear control for single-input single-output(SISO) and multi-input multi-output(MIMO) nonlinear uncertain systems preceded by generalized Prandtl-Ishlinskii(PI) hysteresis is considered respectively. In detail, by using operator based robust right coprime factorization approach, the control system design structures including feedforward and feedback controllers for both SISO and MIMO nonlinear uncertain systems are given, respectively.In which, the controller design includes the information of PI hysteresis and its inverse, and some sufficient conditions for the controllers in both SISO and MIMO systems should be satisfied are also derived respectively. Based on the proposed conditions, influence from hysteresis is rejected, the systems are robustly stable and output tracking performance can be realized.Finally, the effectiveness of the proposed method is confirmed by numerical simulations.
文摘In the past,arms used in the fields of industry and robotics have been designed not to vibrate by increasing their mass and stiffness.The weight of arms has tended to be reduced to improve speed of operation,and decrease the cost of their production.Since the weight saving makes the arms lose their stiffness and therefore vibrate more easily,the vibration suppression control is needed for realizing the above purpose.Incidentally,the use of various smart materials in actuators has grown.In particular,a shape memory alloy(SMA)is applied widely and has several advantages:light weight,large displacement by temperature change,and large force to mass ratio.However,the SMA actuators possess hysteresis nonlinearity between their own temperature and displacement obtained by the temperature.The hysteretic behavior of the SMA actuators affects their control performance.In previous research,an operator-based control system including a hysteresis compensator has been proposed.The vibration of a flexible arm is dealt with as the controlled object;one end of the arm is clamped and the other end is free.The effectiveness of the hysteresis compensator has been confirmed by simulations and experiments.Nevertheless,the feedback signal of the previous designed system has increased exponentially.It is difficult to use the system in the long-term because of the phenomenon.Additionally,the SMA actuator generates and radiates heat because electric current passing through the SMA actuator provides heat,and strain on the SMA actuator is generated.With long-time use of the SMA actuator,the environmental temperature around the SMA actuator varies through radiation of the heat.There exists a risk that the ambient temperature change dealt with as disturbance affects the temperature and strain of the SMA actuator.In this research,a design method of the operator-based control system is proposed considering the long-term use of the system.In the method,the hysteresis characteristics of the SMA actuator and the temperature change around the actuator are considered.The effectiveness of the proposed method is verified by simulations and experiments.
文摘In this paper,a robust nonlinear free vibration control design using an operator based robust right coprime factorization approach is considered for a flexible plate with unknown input nonlinearity.With considering the effect of unknown input nonlinearity from the piezoelectric actuator,operator based controllers are designed to guarantee the robust stability of the nonlinear free vibration control system.Simultaneously,for ensuring the desired tracking performance and reducing the effect of unknown input nonlinearity,operator based tracking compensator and estimation structure are given,respectively.Finally,both simulation and experimental results are shown to verify the effectiveness of the proposed control scheme.
基金supported by the National Natural Science Foundation of China (Grant No. 10904017)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090071120013)the Shanghai Pujiang Program, China (Grant No. 10PJ1401300)
文摘We investigate the acceleration of an adiabatic process with the same survival probability of the ground state by sweeping a parameter nonlinearly, fast in the wide gap region and slowly in the narrow gap region, in contrast to the usual linear sweeping. We find the expected acceleration both in the Landau-Zener tunneling model and in the adiabatic quantum computing model for factorizing the number N - 21.
基金National Natural Science Foundation of China(Grant No.49706067)Natural Science Foundation of Shandong Province(Y98E05076)
文摘Theoretical studies so far on random wave groups have all been in Linear ways. Methods to simulate random wave groups, an important subject in ocean engineering, also employ relationship resulting from a Gaussian process. Many filed measurements have shown that the real sea surface displacement deviates somewhat from Gaussian distribution. Tayfun et al, have further depicted in theory that the envelope spectral peak frequency is constantly zero for a Gaussian process which means that the groupiness factors will be constants, too. In this paper, the effect of nonlinearity on groupiness of a random wave field is examined via the theoretical results derived by Tayfun et al. from an expression of amplitude-modulated Stokes waves. When the surface displacement is treated as a non-Gaussian process, it is found that the group height factors GF(1) and GF(2) proposed by Zhao et al. and Yu et al., respectively, depend on a nonlinearity factor as well as a spectrum-bandwidth factor, deferring from the case of a Gaussion process. Comparison between the theoretical results and the field data shows a favorable agreement in consideration of errors from instrumentation and measuring means. The significance of the results is also discussed.
基金Project supported by the Natural Science Foundation of Guangdong Province
文摘In this paper, the second order nonlinear elliptic differential equations (E) (n)Sigma (i,j=1) partial derivative/partial derivativex(j)[a(i,j)(x,y) partial derivative/partial derivativex(j)y] + q(x)f(y) = e(x) are considered in an exterior Omega subset of R-n, where q(x) is allowed to change sign. Some sufficient conditions for any solutions y(x) of (E) to be satisfied liminf\\x\--> infinity \y(x)\ = 0 are obtained. Particularly, these results improve the previous results for second order ordinary differential equations.