This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The pap...This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.展开更多
Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The fin...Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The findings have allowed authors to develop two analytical approaches using the second Lyapunov(Lyp)method and the Gardanomethod.Since the Gardano method does not involve the development of special positive Lyp functions,it is very efficient and convenient to achieve excessive systemSYCR phenomena.Error is overcome by using Gardano and overcoming some problems in Lyp.Thus we get a great investigation into the convergence of error dynamics,the authors in this paper are interested in giving numerical simulations of the proposed model to clarify the results and check them,an important aspect that will be studied is Synchronization Complete hybrid SYCR and anti-Synchronization,by making use of the Lyapunov expansion analysis,a proposed control method is developed to determine the actual.The basic idea in the proposed way is to receive the evolution of between two methods.Finally,the present model has been applied and showing in a new attractor,and the obtained results are compared with other approximate results,and the nearly good coincidence was obtained.展开更多
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under par...This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The. criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincare map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using nomfeedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to periodmotions by adding an excitation term.展开更多
We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The conver...We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.展开更多
Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical...Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.展开更多
In this paper, we present an extensive study of the linearly forced isotropic turbulence. By using analytical method, we identify two parametric choices, of which they seem to be new as far as our knowledge goes. We p...In this paper, we present an extensive study of the linearly forced isotropic turbulence. By using analytical method, we identify two parametric choices, of which they seem to be new as far as our knowledge goes. We prove that the underlying nonlinear dynamical system for linearly forced isotropic turbulence is the general case of a cubic Lienard equation with linear damping. We also discuss a FokkerPlanck approach to this new dynamical system, which is bistable and exhibits two asymmetric and asymptotically stable stationary probability densities.展开更多
Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficienc...Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.展开更多
To improve the limitation of Adomian finite term series solution reducing the convergence for nonlinear dynamical systems, a recursive algorithm for nonlinear systems analysis based on Adomian Decomposition Method( AD...To improve the limitation of Adomian finite term series solution reducing the convergence for nonlinear dynamical systems, a recursive algorithm for nonlinear systems analysis based on Adomian Decomposition Method( ADM) with suitable truncation order is proposed. The recursive algorithm makes use of Differential Transformation( DT) theory to convert the analytic solution from series into matrix,and then the solution matrix is used in each discrete interval to compute numerical solution iteratively. The maximum stable step-size criterion using recursion percent error( RPE) is developed for good convergence in each iteration. As classic nonlinear dynamical equations,the second-order equation with one RPE and the coupling Duffing equations with two RPEs are illustrated. Comparison results demonstrate that the presented algorithm is valid and applicable to nonlinear dynamical systems analysis.展开更多
A method for seeking main bifurcation parameters of a class of nonlinear dynamical systems is proposed. The method is based on the effects of parametric varia- tion of dynamical systems on eigenvalues of the Frechet m...A method for seeking main bifurcation parameters of a class of nonlinear dynamical systems is proposed. The method is based on the effects of parametric varia- tion of dynamical systems on eigenvalues of the Frechet matrix. The singularity theory is used to study the engineering unfolding (EU) and the universal unfolding (UU) of an arch structure model, respectively. Unfolding parameters of EU are combination of concerned physical parameters in actual engineering, and equivalence of unfolding parameters and physical parameters is verified. Transient sets and bifurcation behaviors of EU and UU are compared to illustrate that EU can reflect main bifurcation characteristics of non- linear systems in engineering. The results improve the understanding and the scope of applicability of EU in actual engineering systems when UU is difficult to be obtained.展开更多
From viewpoint of nonlinear dynamics, the model reduction and its influence on the long-term behaviours of a class of nonlinear dissipative autonomous dynamical system with higher dimension are investigated theoretica...From viewpoint of nonlinear dynamics, the model reduction and its influence on the long-term behaviours of a class of nonlinear dissipative autonomous dynamical system with higher dimension are investigated theoretically under some assumptions. The system is analyzed in the state space with an introduction of a distance definition which can be used to describe the distance between the full system and the reduced system, and the solution of the full system is then projected onto the complete space spanned by the eigenvectors of the linear operator of the governing equations. As a result, the influence of mode series truncation on the long-term behaviours and the error estimate are derived, showing that the error is dependent on the first products of frequencies and damping ratios in the subspace spanned by the eigenvectors with higher modal damping. Furthermore, the fundamental understanding for the topological change of the solution due to the application of different model reduction is interpreted in a mathematically precise way, using the qualitative theory of nonlinear dynamics.展开更多
Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system....Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Nonlinear dynamic behaviors of a rotor dynamical system with finite hydrodynamic bearing supports were investigated. In order to increase the numerical accuracy and decrease computing costs, the isoparametric finite e...Nonlinear dynamic behaviors of a rotor dynamical system with finite hydrodynamic bearing supports were investigated. In order to increase the numerical accuracy and decrease computing costs, the isoparametric finite element method based on variational constraint approach is introduced because analytical bearing forces are not available. This method calculates the oil film forces and their Jacobians simultaneously while it can ensure that they have compatible accuracy. Nonlinear motion of the bearing-rotor system is caused by strong nonlinearity of oil film forces with respect to the displacements and velocities of the center of the rotor. A method consisting of a predictor-corrector mechanism and Newton-Raphson method is presented to calculate equilibrium position and critical speed corresponding to Hopf bifurcation point of the bearing-rotor system. Meanwhile the dynamic coefficients of bearing are obtained. The nonlinear unbalance periodic responses of the system are obtained by using Poincaré-Newton-Floquet method and a combination of predic- tor-corrector mechanism and Poincaré-Newton-Floquet method. The local stability and bifuration behaviors of periodic motions are analyzed by the Floquet theory. Chaotic motion of long term dynamic behaviors of the system is analyzed with power spectrum. The numerical results reveal such complex nonlinear behaviors as periodic, quasi-periodic, chaotic, jumped and coexistent solutions.展开更多
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup...Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.展开更多
This paper is a further study of reference [1]. In this paper, we mainly discuss the complicated dynamical behaviors resulting from a simple one-dimensional model of nonlinear ecosystems: fixed point motion, periodic ...This paper is a further study of reference [1]. In this paper, we mainly discuss the complicated dynamical behaviors resulting from a simple one-dimensional model of nonlinear ecosystems: fixed point motion, periodic motion and chaotic motion etc., and briefly discuss the universality of the complicated dynamical behaviors, which can be described by the first and the second M. Feigenbaun. constants. At last, we discuss the 'one-side lowering phenomenon' due to near unstabilization when the nonlinear ecosystem approaches bifurcation points from unbifurcation side. It is of important theoretical and practical meanings both in the development and utilization of ecological resources ar.d in the design and management of artifilial ecosystems.展开更多
Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of e...Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of exact solutions to the equations of motion of atoms in a body-centered cubic(bcc)lattice is analyzed.These solutions take the form of delocalized nonlinear vibrational modes(DNVMs)and can serve as an excellent test of the accuracy of the interatomic potentials used in MD modeling for bcc crystals.The accuracy of the potentials can be checked by comparing the frequency response of DNVMs calculated using this or that interatomic potential with that calculated using the more accurate ab initio approach.DNVMs can also be used to train new,more accurate machine learning potentials for bcc metals.To address the above issues,it is important to analyze the properties of DNVMs,which is the main goal of this work.Considering only the point symmetry groups of the bcc lattice,34 DNVMs are found.Since interatomic potentials are not used in finding DNVMs,they are exact solutions for any type of potential.Here,the simplest interatomic potentials with cubic anharmonicity are used to simplify the analysis and to obtain some analytical results.For example,the dispersion relations for small-amplitude phonon modes are derived,taking into account interactions between up to the fourth nearest neighbor.The frequency response of the DNVMs is calculated numerically,and for some DNVMs examples of analytical analysis are given.The energy stored by the interatomic bonds of different lengths is calculated,which is important for testing interatomic potentials.The pros and cons of using DNVMs to test and improve interatomic potentials for metals are discussed.Since DNVMs are the natural vibrational modes of bcc crystals,any reliable interatomic potential must reproduce their properties with reasonable accuracy.展开更多
In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical a...In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical approaches exist,engineers increasingly prioritize computationally efficient,precise low-order models for practical implementation.In order to address this need,this study develops an innovative nonlinear dynamic formulation for pipelines accounting for both foundation and boundary nonlinearities.The proposed solution methodology initiates with global mode extraction using the global mode technique,followed by a detailed implementation procedure.Model validation is conducted through a cantilever pipeline case study featuring nonlinear support conditions,where strong agreement between the proposed model's predictions and finiteelement benchmark solutions demonstrates its reliability.Subsequently,a comprehensive parametric study investigates the combined effects of foundation stiffness,boundary constraints,excitation intensity,and nonlinear interaction terms on the vibrational response of the cantilever pipe.This systematic approach yields critical insights for practical engineering designs and applications.展开更多
In recent years,the increased application of inverter-based resources in power grids,along with the gradual replacement of synchronous generators,has made the grid support capability of inverters essential for maintai...In recent years,the increased application of inverter-based resources in power grids,along with the gradual replacement of synchronous generators,has made the grid support capability of inverters essential for maintaining system stability under large disturbances.Critical clearing time provides a quantitative measure of fault severity and system stability,and its sensitivity can help guide parameter adjustments to enhance the grid support capability of inverters.Building on previous researches,this paper proposes a method for calculating critical clearing time sensitivity in power systems with a high proportion of power electronic devices,accounting for the new dynamic characteristics introduced by these devices.The current limit and switching control of inverterbased resources are considered,and the critical clearing time sensitivity under controlling periodic orbits is derived.The proposed critical clearing time sensitivity calculation method is then validated using a double generator single load system and a modified 39-bus system.展开更多
One-dimensional(1D)nonlinear lattices that conserve momentum exhibit anomalous heat conduction,except for the specific case of the 1D coupled rotator lattice.Unlike classical interacting 1D nonlinear lattices such as ...One-dimensional(1D)nonlinear lattices that conserve momentum exhibit anomalous heat conduction,except for the specific case of the 1D coupled rotator lattice.Unlike classical interacting 1D nonlinear lattices such as the Fermi-Pasta-Ulamβ(FPU-β)lattice,the 1D coupled rotator lattice has a bounded interaction potential energy.Recently,the 1D coupled rotator lattice with additional bounded kinetic energy has also been found to exhibit normal heat conduction.Here,we study energy diffusion in the 1D momentum-conserving lattice with bounded kinetic energy only.We find that this lattice exhibits normal energy diffusion as well as normal stretch diffusion.This work indicates that bounded energy,whether kinetic or potential,is crucial for normal energy diffusion and heat conduction in 1D momentum-conserving nonlinear lattices.展开更多
Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the g...Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational nonlinearity avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. A series of transformations are proposed to convert the homoclinic orbits of the unperturbed system to the heteroclinic orbits in the new coordinate, which can be transformed back to the analytical expressions of the homoclinic orbits. Melnikov's method is employed to obtain the criteria for chaotic motion, which implies that the existence of homoclinic orbits to chaos arose from the breaking of homoclinic orbits under the perturbation of damping and external forcing. The efficiency of the criteria for chaotic motion obtained in this paper is verified via bifurcation diagrams, Lyapunov exponents, and numerical simulations. It is worthwhile noting that our study is an attempt to make a step toward the solution of the problem proposed by Cao Q J et al. (Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soe. A 366 635).展开更多
基金This study was supported by the National Key Basic Research and Development Project of China 2004CB418303 the National Natural Science foundation of China under Grant Nos. 40305012 and 40475027Jiangsu Key Laboratory of Meteorological Disaster KLME0601.
文摘This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.
文摘Synchronization is one of the most important characteristics of dynamic systems.For this paper,the authors obtained results for the nonlinear systems controller for the custom Synchronization of two 4D systems.The findings have allowed authors to develop two analytical approaches using the second Lyapunov(Lyp)method and the Gardanomethod.Since the Gardano method does not involve the development of special positive Lyp functions,it is very efficient and convenient to achieve excessive systemSYCR phenomena.Error is overcome by using Gardano and overcoming some problems in Lyp.Thus we get a great investigation into the convergence of error dynamics,the authors in this paper are interested in giving numerical simulations of the proposed model to clarify the results and check them,an important aspect that will be studied is Synchronization Complete hybrid SYCR and anti-Synchronization,by making use of the Lyapunov expansion analysis,a proposed control method is developed to determine the actual.The basic idea in the proposed way is to receive the evolution of between two methods.Finally,the present model has been applied and showing in a new attractor,and the obtained results are compared with other approximate results,and the nearly good coincidence was obtained.
基金supported by the National Natural Science Foundation of China (Grant No.60704037)the Natural Science Foundation of Hebei Province,China (Grant No.F2010001317)the Doctor Foundation of Yanshan University of China (Grant No.B451)
文摘This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The. criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincare map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using nomfeedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to periodmotions by adding an excitation term.
基金Supported by the National Natural Science Foun-dation of China (60133010) the Natural Science Foundation ofHubei Province (2004ABA011)
文摘We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.
文摘Normal form theory is a very effective method when we study degenerate bifurcations of nonlinear dynamical systems. In this paper by using adjoint operator method, normal forms of order 3 and 4 for nonlinear dynamical system with nilpotent linear part and Z(2)-asymmetry are computed. According to normal forms obtained, universal unfoldings for some degenerate bifurcation cases of codimension 3 and simple global characterizations, are studied.
基金supported by the National Natural Science Foundation of China(11172162,10572083)
文摘In this paper, we present an extensive study of the linearly forced isotropic turbulence. By using analytical method, we identify two parametric choices, of which they seem to be new as far as our knowledge goes. We prove that the underlying nonlinear dynamical system for linearly forced isotropic turbulence is the general case of a cubic Lienard equation with linear damping. We also discuss a FokkerPlanck approach to this new dynamical system, which is bistable and exhibits two asymmetric and asymptotically stable stationary probability densities.
基金the National Natural Science Foundation of China (No. 10632030 and10572119)the Fundamental Research Foundation of NPUthe Scientific and Technological Innovation Foundation for teachers of NPU
文摘Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61074104)
文摘To improve the limitation of Adomian finite term series solution reducing the convergence for nonlinear dynamical systems, a recursive algorithm for nonlinear systems analysis based on Adomian Decomposition Method( ADM) with suitable truncation order is proposed. The recursive algorithm makes use of Differential Transformation( DT) theory to convert the analytic solution from series into matrix,and then the solution matrix is used in each discrete interval to compute numerical solution iteratively. The maximum stable step-size criterion using recursion percent error( RPE) is developed for good convergence in each iteration. As classic nonlinear dynamical equations,the second-order equation with one RPE and the coupling Duffing equations with two RPEs are illustrated. Comparison results demonstrate that the presented algorithm is valid and applicable to nonlinear dynamical systems analysis.
基金supported by the National Basic Research Program of China(973 Program)(No.2015CB057400)the National Natural Science Foundation of China(No.11602070)the China Postdoctoral Science Foundation(No.2016M590277)
文摘A method for seeking main bifurcation parameters of a class of nonlinear dynamical systems is proposed. The method is based on the effects of parametric varia- tion of dynamical systems on eigenvalues of the Frechet matrix. The singularity theory is used to study the engineering unfolding (EU) and the universal unfolding (UU) of an arch structure model, respectively. Unfolding parameters of EU are combination of concerned physical parameters in actual engineering, and equivalence of unfolding parameters and physical parameters is verified. Transient sets and bifurcation behaviors of EU and UU are compared to illustrate that EU can reflect main bifurcation characteristics of non- linear systems in engineering. The results improve the understanding and the scope of applicability of EU in actual engineering systems when UU is difficult to be obtained.
文摘From viewpoint of nonlinear dynamics, the model reduction and its influence on the long-term behaviours of a class of nonlinear dissipative autonomous dynamical system with higher dimension are investigated theoretically under some assumptions. The system is analyzed in the state space with an introduction of a distance definition which can be used to describe the distance between the full system and the reduced system, and the solution of the full system is then projected onto the complete space spanned by the eigenvectors of the linear operator of the governing equations. As a result, the influence of mode series truncation on the long-term behaviours and the error estimate are derived, showing that the error is dependent on the first products of frequencies and damping ratios in the subspace spanned by the eigenvectors with higher modal damping. Furthermore, the fundamental understanding for the topological change of the solution due to the application of different model reduction is interpreted in a mathematically precise way, using the qualitative theory of nonlinear dynamics.
基金Supported by National Natural Science Foundation of China (Grant No.51875256)Open Platform Fund of Human Institute of Technology (Grant No.KFA22009)。
文摘Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金Project supported by National Natural Science Foundation of China (Grant No. 50275116), and National High-Technology Research and Development Program of China ( Nos. 2002AA414060, 2002AA503020)
文摘Nonlinear dynamic behaviors of a rotor dynamical system with finite hydrodynamic bearing supports were investigated. In order to increase the numerical accuracy and decrease computing costs, the isoparametric finite element method based on variational constraint approach is introduced because analytical bearing forces are not available. This method calculates the oil film forces and their Jacobians simultaneously while it can ensure that they have compatible accuracy. Nonlinear motion of the bearing-rotor system is caused by strong nonlinearity of oil film forces with respect to the displacements and velocities of the center of the rotor. A method consisting of a predictor-corrector mechanism and Newton-Raphson method is presented to calculate equilibrium position and critical speed corresponding to Hopf bifurcation point of the bearing-rotor system. Meanwhile the dynamic coefficients of bearing are obtained. The nonlinear unbalance periodic responses of the system are obtained by using Poincaré-Newton-Floquet method and a combination of predic- tor-corrector mechanism and Poincaré-Newton-Floquet method. The local stability and bifuration behaviors of periodic motions are analyzed by the Floquet theory. Chaotic motion of long term dynamic behaviors of the system is analyzed with power spectrum. The numerical results reveal such complex nonlinear behaviors as periodic, quasi-periodic, chaotic, jumped and coexistent solutions.
基金supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12202355,12132013,and 12172323)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field.
基金Supported by the Youth Science Fundation of Chinese Academia SinicaYouth Fundation of Lanzhou Unviersity
文摘This paper is a further study of reference [1]. In this paper, we mainly discuss the complicated dynamical behaviors resulting from a simple one-dimensional model of nonlinear ecosystems: fixed point motion, periodic motion and chaotic motion etc., and briefly discuss the universality of the complicated dynamical behaviors, which can be described by the first and the second M. Feigenbaun. constants. At last, we discuss the 'one-side lowering phenomenon' due to near unstabilization when the nonlinear ecosystem approaches bifurcation points from unbifurcation side. It is of important theoretical and practical meanings both in the development and utilization of ecological resources ar.d in the design and management of artifilial ecosystems.
基金support of the RSF Grant No.24-11-00139(analytics,numerical results,manuscript writing)Daxing Xiong acknowledges the support of the NNSF Grant No.12275116,the NSF Grant No.2021J02051,and the startup fund Grant No.MJY21035For Aleksey A.Kudreyko,this work was supported by the Bashkir StateMedicalUniversity StrategicAcademic Leadership Program(PRIORITY-2030)(analytics).
文摘Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of exact solutions to the equations of motion of atoms in a body-centered cubic(bcc)lattice is analyzed.These solutions take the form of delocalized nonlinear vibrational modes(DNVMs)and can serve as an excellent test of the accuracy of the interatomic potentials used in MD modeling for bcc crystals.The accuracy of the potentials can be checked by comparing the frequency response of DNVMs calculated using this or that interatomic potential with that calculated using the more accurate ab initio approach.DNVMs can also be used to train new,more accurate machine learning potentials for bcc metals.To address the above issues,it is important to analyze the properties of DNVMs,which is the main goal of this work.Considering only the point symmetry groups of the bcc lattice,34 DNVMs are found.Since interatomic potentials are not used in finding DNVMs,they are exact solutions for any type of potential.Here,the simplest interatomic potentials with cubic anharmonicity are used to simplify the analysis and to obtain some analytical results.For example,the dispersion relations for small-amplitude phonon modes are derived,taking into account interactions between up to the fourth nearest neighbor.The frequency response of the DNVMs is calculated numerically,and for some DNVMs examples of analytical analysis are given.The energy stored by the interatomic bonds of different lengths is calculated,which is important for testing interatomic potentials.The pros and cons of using DNVMs to test and improve interatomic potentials for metals are discussed.Since DNVMs are the natural vibrational modes of bcc crystals,any reliable interatomic potential must reproduce their properties with reasonable accuracy.
基金supported by the National Natural Science Foundation of China(Nos.52401342 and 12572025)the Fundamental Research Funds for the Central Universities of China(Nos.D5000240076 and G2025KY05171)+1 种基金the Natural Science Basic Research Program of Shaanxi Province(No.2025JCYBMS-026)the Basic Research Programs of Taicang(No.TC2024JC36)。
文摘In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical approaches exist,engineers increasingly prioritize computationally efficient,precise low-order models for practical implementation.In order to address this need,this study develops an innovative nonlinear dynamic formulation for pipelines accounting for both foundation and boundary nonlinearities.The proposed solution methodology initiates with global mode extraction using the global mode technique,followed by a detailed implementation procedure.Model validation is conducted through a cantilever pipeline case study featuring nonlinear support conditions,where strong agreement between the proposed model's predictions and finiteelement benchmark solutions demonstrates its reliability.Subsequently,a comprehensive parametric study investigates the combined effects of foundation stiffness,boundary constraints,excitation intensity,and nonlinear interaction terms on the vibrational response of the cantilever pipe.This systematic approach yields critical insights for practical engineering designs and applications.
文摘In recent years,the increased application of inverter-based resources in power grids,along with the gradual replacement of synchronous generators,has made the grid support capability of inverters essential for maintaining system stability under large disturbances.Critical clearing time provides a quantitative measure of fault severity and system stability,and its sensitivity can help guide parameter adjustments to enhance the grid support capability of inverters.Building on previous researches,this paper proposes a method for calculating critical clearing time sensitivity in power systems with a high proportion of power electronic devices,accounting for the new dynamic characteristics introduced by these devices.The current limit and switching control of inverterbased resources are considered,and the critical clearing time sensitivity under controlling periodic orbits is derived.The proposed critical clearing time sensitivity calculation method is then validated using a double generator single load system and a modified 39-bus system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175074 and 12475037)the Science and Technology Commission of Shanghai Municipality(Grant No.24520711200)supported by the Shuguang Program of Shanghai Education Development Foundation and the Shanghai Municipal Education Commission(Grant No.23SG18)。
文摘One-dimensional(1D)nonlinear lattices that conserve momentum exhibit anomalous heat conduction,except for the specific case of the 1D coupled rotator lattice.Unlike classical interacting 1D nonlinear lattices such as the Fermi-Pasta-Ulamβ(FPU-β)lattice,the 1D coupled rotator lattice has a bounded interaction potential energy.Recently,the 1D coupled rotator lattice with additional bounded kinetic energy has also been found to exhibit normal heat conduction.Here,we study energy diffusion in the 1D momentum-conserving lattice with bounded kinetic energy only.We find that this lattice exhibits normal energy diffusion as well as normal stretch diffusion.This work indicates that bounded energy,whether kinetic or potential,is crucial for normal energy diffusion and heat conduction in 1D momentum-conserving nonlinear lattices.
基金supported by the National Natural Science Foundation of China (Grant Nos.11002093,11072065,and 10872136)the Science Foundation of the Science and Technology Department of Hebei Province of China (Grant No.11215643)
文摘Nonlinear dynamical systems with an irrational restoring force often occur in both science and engineering, and always lead to a barrier for conventional nonlinear techniques. In this paper, we have investigated the global bifurcations and the chaos directly for a nonlinear system with irrational nonlinearity avoiding the conventional Taylor's expansion to retain the natural characteristics of the system. A series of transformations are proposed to convert the homoclinic orbits of the unperturbed system to the heteroclinic orbits in the new coordinate, which can be transformed back to the analytical expressions of the homoclinic orbits. Melnikov's method is employed to obtain the criteria for chaotic motion, which implies that the existence of homoclinic orbits to chaos arose from the breaking of homoclinic orbits under the perturbation of damping and external forcing. The efficiency of the criteria for chaotic motion obtained in this paper is verified via bifurcation diagrams, Lyapunov exponents, and numerical simulations. It is worthwhile noting that our study is an attempt to make a step toward the solution of the problem proposed by Cao Q J et al. (Cao Q J, Wiercigroch M, Pavlovskaia E E, Thompson J M T and Grebogi C 2008 Phil. Trans. R. Soe. A 366 635).