期刊文献+
共找到371篇文章
< 1 2 19 >
每页显示 20 50 100
Recent advancements of nonlinear dynamics in mode coupled microresonators:a review 被引量:1
1
作者 Xuefeng WANG Zhan SHI +3 位作者 Qiqi YANG Yuzhi CHEN Xueyong WEI Ronghua HUAN 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期209-232,共24页
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup... Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field. 展开更多
关键词 mode coupling micro-electro-mechanical system(MEMS)resonator nonlinear dynamics
在线阅读 下载PDF
Nonlinear dynamics of intricate constrained fluid-conveying pipelines based on the global modal method
2
作者 Ye TANG Yuxiang WANG +2 位作者 Hujie ZHANG Tianzhi YANG Fantai MENG 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1851-1866,共16页
In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical a... In recent years,scholars around the world have shown increasing interest in elastic support structures,leading to significant progress in dynamic modeling techniques for pipeline systems.Although multiple analytical approaches exist,engineers increasingly prioritize computationally efficient,precise low-order models for practical implementation.In order to address this need,this study develops an innovative nonlinear dynamic formulation for pipelines accounting for both foundation and boundary nonlinearities.The proposed solution methodology initiates with global mode extraction using the global mode technique,followed by a detailed implementation procedure.Model validation is conducted through a cantilever pipeline case study featuring nonlinear support conditions,where strong agreement between the proposed model's predictions and finiteelement benchmark solutions demonstrates its reliability.Subsequently,a comprehensive parametric study investigates the combined effects of foundation stiffness,boundary constraints,excitation intensity,and nonlinear interaction terms on the vibrational response of the cantilever pipe.This systematic approach yields critical insights for practical engineering designs and applications. 展开更多
关键词 fluid-conveying pipeline complex constraint nonlinear dynamics global modal method
在线阅读 下载PDF
An efficient uncertainty propagation method for nonlinear dynamics with distribution-free P-box processes 被引量:1
3
作者 Licong ZHANG Chunna LI +3 位作者 Hua SU Yuannan XU Andrea Da RONCH Chunlin GONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期116-138,共23页
The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to ... The distribution-free P-box process serves as an effective quantification model for timevarying uncertainties in dynamical systems when only imprecise probabilistic information is available.However,its application to nonlinear systems remains limited due to excessive computation.This work develops an efficient method for propagating distribution-free P-box processes in nonlinear dynamics.First,using the Covariance Analysis Describing Equation Technique(CADET),the dynamic problems with P-box processes are transformed into interval Ordinary Differential Equations(ODEs).These equations provide the Mean-and-Covariance(MAC)bounds of the system responses in relation to the MAC bounds of P-box-process excitations.They also separate the previously coupled P-box analysis and nonlinear-dynamic simulations into two sequential steps,including the MAC bound analysis of excitations and the MAC bounds calculation of responses by solving the interval ODEs.Afterward,a Gaussian assumption of the CADET is extended to the P-box form,i.e.,the responses are approximate parametric Gaussian P-box processes.As a result,the probability bounds of the responses are approximated by using the solutions of the interval ODEs.Moreover,the Chebyshev method is introduced and modified to efficiently solve the interval ODEs.The proposed method is validated based on test cases,including a duffing oscillator,a vehicle ride,and an engineering black-box problem of launch vehicle trajectory.Compared to the reference solutions based on the Monte Carlo method,with relative errors of less than 3%,the proposed method requires less than 0.2% calculation time.The proposed method also possesses the ability to handle complex black-box problems. 展开更多
关键词 nonlinear dynamics Uncertainty propagation Imprecise probability Distribution-free P-box processes Chebyshev method
原文传递
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
4
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
在线阅读 下载PDF
Finite Deformation, Finite Strain Nonlinear Dynamics and Dynamic Bifurcation in TVE Solids with Rheology
5
作者 Karan S. Surana Sri Sai Charan Mathi 《Applied Mathematics》 2024年第1期108-168,共61页
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ... This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon. 展开更多
关键词 THERMOVISCOELASTICITY RHEOLOGY Memory Finite Strain Finite Deformation nonlinear dynamics dynamic Bifurcation Ordered Rate Theories
在线阅读 下载PDF
Nonlinear dynamic analysis of interaction between vehicle and road surfaces for 5-axle heavy truck 被引量:1
6
作者 黎文琼 张建润 +1 位作者 刘晓波 王园 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期405-409,共5页
Based on the analysis of nonlinear geometric characteristics of the suspension systems and tires, a 3D nonlinear dynamic model of a typical heavy truck is established. The impact factors of dynamic tire loads, includi... Based on the analysis of nonlinear geometric characteristics of the suspension systems and tires, a 3D nonlinear dynamic model of a typical heavy truck is established. The impact factors of dynamic tire loads, including the dynamic load stress factors, and the maximal and the minimal vertical dynamic load factors, are used to evaluate the dynamic interaction between heavy vehicles and roads under the condition of random road surface roughness. Matlab/Simulink is used to simulate the nonlinear dynamic system and calculate the impact factors. The effects of different road surface conditions on the safety of vehicle movement and the durability of parts of a vehicle are analyzed, as well as the effects of different structural parameters and different vehicle speeds on road surfaces. The study results provide both the warning limits of road surface roughness and the limits of corresponding dynamic parameters for the 5-axle heavy truck. 展开更多
关键词 5-axle heavy truck nonlinear dynamics dynamic impact factor road surlhce roughness
在线阅读 下载PDF
Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations 被引量:16
7
作者 Fei Fang Guanghui Xia Jianguo Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第3期561-577,共17页
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Eul... The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed- parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold. 展开更多
关键词 Parametric and external excitations nonlinear distributed parameter model nonlinear dynamic response Energy harvesting Harmonic balance method
在线阅读 下载PDF
Nonlinear dynamic behavior of a flexible asymmetric aero-engine rotor system in maneuvering flight 被引量:10
8
作者 Tian GAO Shuqian CAO Yongtao SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2633-2648,共16页
Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dam... Aero-engine rotor systems installed in aircraft are considered to have a base motion.In this paper,a flexible asymmetric rotor system is modeled considering the nonlinear supports of ball bearings and Squeeze Film Dampers(SFDs),and the dynamic characteristics of the rotor system under maneuvering flight are systematically studied.Effects of the translational accelerative motions,the angular motions and the pitching flight with combined translational and angular motions on nonlinear dynamic behavior of the rotor system are investigated.The results show that,due to the nonlinear coupled effects among the rotor,ball bearings and SFDs,within the first bending resonance region,responses of the rotor show obvious nonlinear characteristics such as bistable phenomenon,amplitude jumping phenomenon and non-synchronous vibration.Translational acceleration motion of the aircraft leads to axis offset of the rotor system and thus results in the reduction and the final disappearance of the bistable rotating speed region.The pitching angular motion mainly affects rotational vibration of the rotor system,and thus further induces their transverse vibrations.For the pitching flight with combined translational and angular motions,a critical flight parameter is found to correspond to the conversion of two steady responses of the rotor system,in which one response displays small amplitude and synchronous vibration,and the other shows large amplitude and non-synchronous vibration. 展开更多
关键词 Aero-engine rotor system Ball bearings Maneuvering flight nonlinear dynamics Squeeze film dampers
原文传递
Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations 被引量:11
9
作者 Qiaoyun YAN Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第8期971-984,共14页
This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is ca... This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincaré map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re- lationship between the dual-frequency excitations. 展开更多
关键词 axially accelerating Timoshenko beam VISCOELASTICITY nonlinear dynamics parametric excitation external excitation
在线阅读 下载PDF
NONLINEAR DYNAMIC CHARACTERISTICS OF HYDRODYNAMIC JOURNAL BEARING-FLEXIBLE ROTOR SYSTEM 被引量:7
10
作者 LuYanjun YuLie LiuHeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期58-63,共6页
The nonlinear dynamic behaviors of flexible rotor system with hydrodynamicbearing supports are analyzed. The shaft is modeled by using the finite element method that takesthe effect of inertia and shear into considera... The nonlinear dynamic behaviors of flexible rotor system with hydrodynamicbearing supports are analyzed. The shaft is modeled by using the finite element method that takesthe effect of inertia and shear into consideration. According to the nonlinearity of thehydrodynamic journal bearing-flexible rotor system, a modified modal synthesis technique withfree-interface is represented to reduce degrees-of-freedom of model of the flexible rotor system.According to physical character of oil film, variational constrain approach is introduced tocontinuously revise the variational form of Reynolds equation at every step of dynamic integrationand iteration. Fluid lubrication problem with Reynolds boundary is solved by the isoparametricfinite element method without the increasing of computing efforts. Nonlinear oil film forces andtheir Jacobians are simultaneously calculated and their compatible accuracy is obtained. Theperiodic motions are obtained by using the Poincare -Newton-Floquet (PNF) method. A method,combining the predictor-corrector mechanism to the PNF method, is presented to calculate thebifurcation point of periodic motions to be subject to change of system parameters. The localstability and bifurcation behaviors of periodic motions are obtained by Floquet theory. The chaoticmotions of the bearing-rotor system are investigated by power spectrum. The numerical examples showthat the scheme of this study saves computing efforts but also is of good precision. 展开更多
关键词 nonlinear dynamics Bearing-rotor system STABILITY BIFURCATION ChaosFinite element method
在线阅读 下载PDF
Nonlinear Dynamics and Stability of Neural Networks with Delay-Time 被引量:14
11
作者 L. C. Jiao, member, IEEE, and Zheng Bao, Senior member, IEEECenter for Neural Networks and Institute of Elec. Eng, Xidian University, Xian 710071, China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1992年第2期13-26,共14页
In this paper we study the dynamic properties and stabilities of neural networks with delay-time (which includes the time-varying case) by differential inequalities and Lyapunov function approaches. The criteria of co... In this paper we study the dynamic properties and stabilities of neural networks with delay-time (which includes the time-varying case) by differential inequalities and Lyapunov function approaches. The criteria of connective stability, robust stability, Lyapunov stability, asymptotic atability, exponential stability and Lagrange stability of neural networks with delay-time are established, and the results obtained are very useful for the design, implementation and application of adaptive learning neural networks. 展开更多
关键词 nonlinear dynamics STABILITY Neural network.
在线阅读 下载PDF
Robust leaderless time-varying formation control for unmanned aerial vehicle swarm system with Lipschitz nonlinear dynamics and directed switching topologies 被引量:6
12
作者 Yuhang KANG Yu KUANG +4 位作者 Jun CHENG Bangchu ZHANG Yahui QI Shaolei ZHOU Kai MAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期124-136,共13页
This paper tackles the robust leaderless Time-Varying Formation(TVF)control problem for the Unmanned Aerial Vehicle(UAV)swarm system with Lipschitz nonlinear dynamics,external disturbances and directed switching topol... This paper tackles the robust leaderless Time-Varying Formation(TVF)control problem for the Unmanned Aerial Vehicle(UAV)swarm system with Lipschitz nonlinear dynamics,external disturbances and directed switching topologies.In comparison with the previous achievements on formation control problems,the UAV swarm system with Lipschitz nonlinear dynamics can accomplish the pre-designed TVF while tracking a pre-given trajectory which is produced by a virtual leader UAV in the presence of external disturbances.Firstly,by applying the consensus theory,a TVF controller is developed with the local neighborhood status information,the errors of real time status of all UAVs,the expected formation configuration and the pre-given trajectory under directed switching topologies.Secondly,through a certain matrix variable substitution,the UAV swarm system formation control issue is transformed into a lower dimensional asymptotically stable control issue.Thirdly,by introducing the minimum dwell time,the design steps of formation control algorithm are further acquired.In the meantime,the stability of the UAV swarm system is analyzed through the construction of a piecewise continuous Lyapunov functional and via the Linear Matrix Inequalities(LMIs)method.Finally,the comparison results of a numerical simulation are elaborated to verify the validity of the proposed approach. 展开更多
关键词 Directed switching topologies Lipschitz nonlinear dynamics Lyapunov functional Swarm system Time-Varying Formation(TVF) Unmanned Aerial Vehicle(UAV)
原文传递
Nonlinear dynamics of flexible tethered satellite system subject to space environment 被引量:6
13
作者 Bensong YU Dongping JIN Hao WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第4期485-500,共16页
The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital ... The paper studies the nonlinear dynamics of a flexible tethered satellite system subject to space environments, such as the J2 perturbation, the air drag force, the solar pressure, the heating effect, and the orbital eccentricity. The flexible tether is modeled as a series of lumped masses and viscoelastic dampers so that a finite multi- degree-of-freedom nonlinear system is obtained. The stability of equilibrium positions of the nonlinear system is then analyzed via a simplified two-degree-freedom model in an orbital reference frame. In-plane motions of the tethered satellite system are studied numerically, taking the space environments into account. A large number of numerical simulations show that the flexible tethered satellite system displays nonlinear dynamic characteristics, such as bifurcations, quasi-periodic oscillations, and chaotic motions. 展开更多
关键词 tethered satellite system flexible tether model space environment stability nonlinear dynamics
在线阅读 下载PDF
NONLINEAR DYNAMICS AND SYNCHRONIZATION OF TWO COUPLED PIPES CONVEYING PULSATING FLUID 被引量:6
14
作者 Qiao Ni Zilong Zhang +2 位作者 Lin Wang Qin Qian Min Tang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第2期162-171,共10页
In this paper, the nonlinear dynamical behavior of two coupled pipes conveying pulsating fluid is studied. The connection between the two pipes is considered as a distributed linear spring. Based on this consideration... In this paper, the nonlinear dynamical behavior of two coupled pipes conveying pulsating fluid is studied. The connection between the two pipes is considered as a distributed linear spring. Based on this consideration, the equations of motion of the coupled two-pipe system are obtained. The two coupled nonlinear partial differential equations, discretized using the fourth- order Galerkin method, are solved by a fourth-order Runge-Kutta integration algorithm. Results show that the connection stiffness has a significant effect on the dynamical behavior of the coupled system. It is found that for some parameter values the motion types of the two pipes might be synchronous. 展开更多
关键词 pipe conveying pulsating fluid nonlinear dynamics coupled two-pipe system SYNCHRONIZATION
原文传递
Nonlinear dynamic analysis of multi-base seismically isolated structures with uplift potentialⅡ:verification examples 被引量:5
15
作者 Panayiotis C.Roussis Panos C.Tsopelas Michael C.Constantinou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期83-91,共9页
The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two... The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two numerical examples have been analyzed using the computational algorithm incorporated into program 3D-BASIS-ME-MB, developed on the basis of the newly-formulated analytical model. The first example concerns a seven-story model structure that was tested on the earthquake simulator at the University at Buflhlo and was also used as a verification example for program SAP2000. The second example concerns a two-tower, multi-story structure with a split-level seismic-isolation system. For purposes of verification, key results produced by 3D-BASIS-ME-MB are compared to experimental results, or results obtained from other structural/finite element programs. In both examples, the analyzed structure is excited under conditions of bearing uplift, thus yielding a case of much interest in verifying the capabilities of the developed analysis tool. 展开更多
关键词 seismic isolation nonlinear dynamic analysis UPLIFT VERIFICATION multiple superstructures/bases
在线阅读 下载PDF
A Novel Robust Nonlinear Dynamic Data Reconciliation 被引量:4
16
作者 高倩 阎威武 邵惠鹤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期698-702,共5页
Outlier in one variable will smear the estimation of other measurements in data reconciliation (DR). In this article, a novel robust method is proposed for nonlinear dynamic data reconciliation, to reduce the influe... Outlier in one variable will smear the estimation of other measurements in data reconciliation (DR). In this article, a novel robust method is proposed for nonlinear dynamic data reconciliation, to reduce the influence of outliers on the result of DR. This method introduces a penalty function matrix in a conventional least-square objective function, to assign small weights for outliers and large weights for normal measurements. To avoid the loss of data information, element-wise Mahalanobis distance is proposed, as an improvement on vector-wise distance, to construct a penalty function matrix. The correlation of measurement error is also considered in this article. The method introduces the robust statistical theory into conventional least square estimator by constructing the penalty weight matrix and gets not only good robustness but also simple calculation. Simulation of a continuous stirred tank reactor, verifies the effectiveness of the proposed algorithm. 展开更多
关键词 nonlinear dynamic data reconciliation ROBUST M-ESTIMATOR OUTLIER OPTIMIZATION
在线阅读 下载PDF
ANALYSIS OF NONLINEAR DYNAMIC RESPONSE FOR VISCOELASTIC COMPOSITE PLATE WITH TRANSVERSE MATRIX CRACKS 被引量:6
17
作者 FuYiming LiPing'en ZhengYufang 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第3期230-238,共9页
Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite ... Based on the Schapery three-dimensional viscoelastic constitutive relationship with growing damage, a damage model with transverse matrix cracks for the unidirectional ?bre rein- forced viscoelastic composite plates is developed. By using Karman theory, the nonlinear dynamic governing equations of the viscoelastic composite plates under transverse periodic loading are es- tablished. By applying the ?nite di?erence method in spatial domain and the Newton-Newmark method in time domain, and using the iterative procedure, the integral-partial di?erential gov- erning equations are solved. Some examples are given and the results are compared with available data. 展开更多
关键词 viscoelastic composite plate transverse matrix cracks damage evolution equation nonlinear dynamic response
在线阅读 下载PDF
AN IMPLICIT SERIES PRECISE INTEGRATION ALGORITHM FOR STRUCTURAL NONLINEAR DYNAMIC EQUATIONS 被引量:5
18
作者 LiYuanyin JinXianlong WangYuanqing 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第1期70-75,共6页
Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these al- gorithms. If the inversion of the matrix d... Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these al- gorithms. If the inversion of the matrix doesn’t exist or isn’t stable, the precision and stability of the algorithms will be afected. An explicit series solution of the state equation has been pre- sented. The solution avoids calculating the inversion of a matrix and its precision can be easily controlled. In this paper, an implicit series solution of nonlinear dynamic equations is presented. The algorithm is more precise and stable than the explicit series solution and isn’t sensitive to the time-step. Finally, a numerical example is presented to demonstrate the efectiveness of the algorithm. 展开更多
关键词 nonlinear dynamic system numerical integration precise integration method ex- ponential matrix implicit series solution
在线阅读 下载PDF
Analysis and Application of Multiple-Precision Computation and Round-off Error for Nonlinear Dynamical Systems 被引量:4
19
作者 王鹏飞 黄刚 王在志 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第5期758-766,共9页
This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The pap... This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demoastrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression. 展开更多
关键词 multiple-precision numerical calculation round-off error nonlinear dynamical system
在线阅读 下载PDF
Evaluation on Stability of Stope Structure Based on Nonlinear Dynamics of Coupling Artificial Neural Network 被引量:7
20
作者 Meifeng Cai Xingping Lai 《Journal of University of Science and Technology Beijing》 CSCD 2002年第1期1-4,共4页
The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activa... The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems. 展开更多
关键词 coupling neural network nonlinear dynamics structural stability stope parameters
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部