In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological gr...In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological groups.展开更多
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie po...In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.展开更多
A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solu...A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solutions assoeiated with the potential symmetries are obtained.展开更多
This paper studies a nonlinear diffusion system with coupled nonlinear boundary flux and two kinds of inner sources (positive for the first and negative for the second), where the four nonlinear mechanisms are descr...This paper studies a nonlinear diffusion system with coupled nonlinear boundary flux and two kinds of inner sources (positive for the first and negative for the second), where the four nonlinear mechanisms are described by eight nonlinear parameters. The critical exponent of the system is determined by a complete classification of the eight nonlinear parameters, which is represented via the characteristic algebraic system introduced to the problem.展开更多
This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of ...This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of generalized solutions of the system, which extend the known results for nonlinear diffusion systems with more special nonlinearities.展开更多
The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations ...The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.展开更多
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi...We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.展开更多
In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-d...In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results.展开更多
In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth...In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.展开更多
In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Othe...In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Otherwise, the boundary layer exists, and its thickness is proportional to epsilon(1/2), here epsilon is a small positive real parameter.展开更多
This paper concerns with properties of solutions of a nonlinear diffusion problem in non-divergence form. By constructing proper test functions, it is proved that solutions of the problem possess the property of local...This paper concerns with properties of solutions of a nonlinear diffusion problem in non-divergence form. By constructing proper test functions, it is proved that solutions of the problem possess the property of localization.展开更多
A novel smoothness term of Bayesian regularization framework based on M-estimation of robust statistics is proposed, and from this term a class of fourth-order nonlinear diffusion methods is proposed. These methods at...A novel smoothness term of Bayesian regularization framework based on M-estimation of robust statistics is proposed, and from this term a class of fourth-order nonlinear diffusion methods is proposed. These methods attempt to approximate an observed image with a piecewise linear image, which looks more natural than piecewise constant image used to approximate an observed image by P-M model. It is known that M-estimators and W-estimators are essentially equivalent and solve the same minimization problem. Then, we propose PL bilateral filter from equivalent W-estimator. This new model is designed for piecewise linear image filtering, which is more effective than normal bilateral filter.展开更多
A texture image segmentation based on nonlinear diffusion is presented. The scale of texture can be measured during the process of nonlinear diffusion. A smooth 5-channel vector image with edge preserved, which is com...A texture image segmentation based on nonlinear diffusion is presented. The scale of texture can be measured during the process of nonlinear diffusion. A smooth 5-channel vector image with edge preserved, which is composed of intensity, scale and orientation of texture image, can be achieved by coupled nonlinear diffusion. A multi-channel statistical region active contour is employed to segment this vector image. The method can be seen as a kind of unsupervised segmentation because parameters are not sensitive to different texture images. Experimental results show its high efficiency in the semiautomatic extraction of texture image.展开更多
In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of ...In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of the solution is proved.展开更多
We find that there are two time scales t and c In t in the asymptotic behaviour of diffusion process in the porous medium, which give us a new insight to the anomalous dimension in this problem, further we construct a...We find that there are two time scales t and c In t in the asymptotic behaviour of diffusion process in the porous medium, which give us a new insight to the anomalous dimension in this problem, further we construct an iterative method to calculate the anomalous dimension and obtain an improved result,展开更多
We investigate the properties of fundamental,multi-peak,and multi-peaked twisted solitons in three types of finite waveguide lattices imprinted in photorefractive media with asymmetrical diffusion nonlinearity.Two opp...We investigate the properties of fundamental,multi-peak,and multi-peaked twisted solitons in three types of finite waveguide lattices imprinted in photorefractive media with asymmetrical diffusion nonlinearity.Two opposite soliton selfbending signals are considered for different families of solitons.Power thresholdless fundamental and multi-peaked solitons are stable in the low power region.The existence domain of two-peaked twisted solitons can be changed by the soliton self-bending signals.When solitons tend to self-bend toward the waveguide lattice,stable two-peaked twisted solitons can be found in a larger region in the middle of their existence region.Three-peaked twisted solitons are stable in the lower(upper)cutoff region for a shallow(deep)lattice depth.Our results provide an effective guidance for revealing the soliton characteristics supported by a finite waveguide lattice with diffusive nonlocal nonlinearity.展开更多
For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported...For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported. This model contains a non-linear mass balance equation which is related to rate expression. This paper presents an approximate analytical method (Modified Adomian decomposition method) to solve the non-linear differential equations for chemical kinetics with diffusion effects. A simple and closed form of expressions pertaining to substrate concentration and utilization factor is presented for all value of diffusion parameters. These analytical results are compared with numerical results and found to be in good agreement.展开更多
The Rician noise introduced into the diffusion tensor images (DTIs) can bring serious impacts on tensor calculation and fiber tracking. To decrease the effects of the Rician noise, we propose to consider the wavelet...The Rician noise introduced into the diffusion tensor images (DTIs) can bring serious impacts on tensor calculation and fiber tracking. To decrease the effects of the Rician noise, we propose to consider the wavelet-based diffusion method to denoise multiehannel typed diffusion weighted (DW) images. The presented smoothing strategy, which utilizes anisotropic nonlinear diffusion in wavelet domain, successfully removes noise while preserving both texture and edges. To evaluate quantitatively the efficiency of the presented method in accounting for the Rician noise introduced into the DW images, the peak-to-peak signal-to-noise ratio (PSNR) and signal-to-mean squared error ratio (SMSE) metrics are adopted. Based on the synthetic and real data, we calculated the ap- parent diffusion coefficient (ADC) and tracked the fibers. We made comparisons between the presented model, the wave shrinkage and regularized nonlinear diffusion smoothing method. All the experiment results prove quantitatively and visually the better performance of the presented filter.展开更多
In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order sp...In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments.展开更多
文摘In this paper, by the method of upper and lower solutions, we establish the existence of the non-trivial nonnegative periodic solutions for a class of degenerate diffusion system arising from dynamics of biological groups.
基金The project supported by National Natural Science Foundation of China under Grant No.10671156the Program for New CenturyExcellent Talents in Universities under Grant No.NCET-04-0968
文摘In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10371098 and 10447007 and the Program for New Century Excellent Talents in Universities (NCET)
文摘A system of nonlinear diffusion equations with three components is studied via the potential symmetry method. It is shown that the system admits the potential symmetries for certain diffusion terms. The invariant solutions assoeiated with the potential symmetries are obtained.
文摘This paper studies a nonlinear diffusion system with coupled nonlinear boundary flux and two kinds of inner sources (positive for the first and negative for the second), where the four nonlinear mechanisms are described by eight nonlinear parameters. The critical exponent of the system is determined by a complete classification of the eight nonlinear parameters, which is represented via the characteristic algebraic system introduced to the problem.
基金the National Natural Science Foundation of China (Nos.10471013 10771024)
文摘This paper studies coupled nonlinear diffusion equations with more general nonlinearities, subject to homogeneous Neumann boundary conditions. The necessary and sufficient conditions are obtained for the existence of generalized solutions of the system, which extend the known results for nonlinear diffusion systems with more special nonlinearities.
基金The project supported in part by National Natural Science Foundation of China under Grant No.19901027the Natural Science Foundation of Shaanxi Province of China
文摘The generalized conditional symmetry and sign-invariant approaches are developed to study the nonlinear diffusion equations with x-dependent convection and source terms. We obtain conditions under which the equations admit the second-order generalized conditional symmetries and the first-order sign-invariants on the solutions. Several types of different generalized conditional symmetries and first-order sign-invariants for the equations with diffusion of power law are obtained. Exact solutions to the resulting equations are constructed.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.
基金the National Natural Science Fund(11661058,11761053)Natural Science Fund of Inner Mongolia Autonomous Region(2016MS0102,2017MS0107)+1 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A07)National Undergraduate Innovative Training Project of Inner Mongolia University(201710126026).
文摘In this article,a high-order scheme,which is formulated by combining the quadratic finite element method in space with a second-order time discrete scheme,is developed for looking for the numerical solution of a two-dimensional nonlinear time fractional thermal diffusion model.The time Caputo fractional derivative is approximated by using the L2-1formula,the first-order derivative and nonlinear term are discretized by some second-order approximation formulas,and the quadratic finite element is used to approximate the spatial direction.The error accuracy O(h3+t2)is obtained,which is verified by the numerical results.
基金National Natural Science Foundation of China under Grant Nos.10472091,10332030,and 10502042the Natural Science Foundation of Shaanxi Province under Grant No.2003A03
文摘In this paper, we introduce a new invariant set Eo={u:ux=f'(x)F(u)+ε[g'(x)-f'(x)g(x)]F(u)×exp(-∫^u1/F(z)dz)}where f and g are some smooth functions of x, ε is a constant, and F is a smooth function to be determined. The invariant sets and exact sohltions to nonlinear diffusion equation ut = ( D(u)ux)x + Q(x, u)ux + P(x, u), are discussed. It is shown that there exist several classes of solutions to the equation that belong to the invariant set Eo.
文摘In this paper, the author analyzes the singularity of a boundary layer in a nonlinear diffusion problem. Results show when the limiting solution satisfies the boundary condition, there is no boundary singularity. Otherwise, the boundary layer exists, and its thickness is proportional to epsilon(1/2), here epsilon is a small positive real parameter.
文摘This paper concerns with properties of solutions of a nonlinear diffusion problem in non-divergence form. By constructing proper test functions, it is proved that solutions of the problem possess the property of localization.
文摘A novel smoothness term of Bayesian regularization framework based on M-estimation of robust statistics is proposed, and from this term a class of fourth-order nonlinear diffusion methods is proposed. These methods attempt to approximate an observed image with a piecewise linear image, which looks more natural than piecewise constant image used to approximate an observed image by P-M model. It is known that M-estimators and W-estimators are essentially equivalent and solve the same minimization problem. Then, we propose PL bilateral filter from equivalent W-estimator. This new model is designed for piecewise linear image filtering, which is more effective than normal bilateral filter.
文摘A texture image segmentation based on nonlinear diffusion is presented. The scale of texture can be measured during the process of nonlinear diffusion. A smooth 5-channel vector image with edge preserved, which is composed of intensity, scale and orientation of texture image, can be achieved by coupled nonlinear diffusion. A multi-channel statistical region active contour is employed to segment this vector image. The method can be seen as a kind of unsupervised segmentation because parameters are not sensitive to different texture images. Experimental results show its high efficiency in the semiautomatic extraction of texture image.
基金Supported by the National Natural Science Foundation of China (40676016 and 40876010)the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-Q03-08)Construct Project of E-Institutes of Shanghai Municipal Education Commission (E03004)
文摘In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of the solution is proved.
基金Supported by the National Fundamental Research Programme of China, the Innovation Funds from Chinese Academy of Sciences, the National Natural Science Foundation of China under Grant Nos 60121503 and 10604052. Tu Tao thanks Professor N. Goldenfeld (at UIUC) for helpful discussion.
文摘We find that there are two time scales t and c In t in the asymptotic behaviour of diffusion process in the porous medium, which give us a new insight to the anomalous dimension in this problem, further we construct an iterative method to calculate the anomalous dimension and obtain an improved result,
基金Project supported by the National Natural Science Foundation of China(Grant No.11704339)the Applied Basic Research Program of Shanxi Province,China(Grant No.201901D211466)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2019JM-307)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP),China(Grant Nos.2019L0896 and 2019L0905)。
文摘We investigate the properties of fundamental,multi-peak,and multi-peaked twisted solitons in three types of finite waveguide lattices imprinted in photorefractive media with asymmetrical diffusion nonlinearity.Two opposite soliton selfbending signals are considered for different families of solitons.Power thresholdless fundamental and multi-peaked solitons are stable in the low power region.The existence domain of two-peaked twisted solitons can be changed by the soliton self-bending signals.When solitons tend to self-bend toward the waveguide lattice,stable two-peaked twisted solitons can be found in a larger region in the middle of their existence region.Three-peaked twisted solitons are stable in the lower(upper)cutoff region for a shallow(deep)lattice depth.Our results provide an effective guidance for revealing the soliton characteristics supported by a finite waveguide lattice with diffusive nonlocal nonlinearity.
文摘For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported. This model contains a non-linear mass balance equation which is related to rate expression. This paper presents an approximate analytical method (Modified Adomian decomposition method) to solve the non-linear differential equations for chemical kinetics with diffusion effects. A simple and closed form of expressions pertaining to substrate concentration and utilization factor is presented for all value of diffusion parameters. These analytical results are compared with numerical results and found to be in good agreement.
基金National‘973’ProjectGrant number:2003 CB716103+1 种基金Shanghai Normal University ProjectGrant number:SK200734
文摘The Rician noise introduced into the diffusion tensor images (DTIs) can bring serious impacts on tensor calculation and fiber tracking. To decrease the effects of the Rician noise, we propose to consider the wavelet-based diffusion method to denoise multiehannel typed diffusion weighted (DW) images. The presented smoothing strategy, which utilizes anisotropic nonlinear diffusion in wavelet domain, successfully removes noise while preserving both texture and edges. To evaluate quantitatively the efficiency of the presented method in accounting for the Rician noise introduced into the DW images, the peak-to-peak signal-to-noise ratio (PSNR) and signal-to-mean squared error ratio (SMSE) metrics are adopted. Based on the synthetic and real data, we calculated the ap- parent diffusion coefficient (ADC) and tracked the fibers. We made comparisons between the presented model, the wave shrinkage and regularized nonlinear diffusion smoothing method. All the experiment results prove quantitatively and visually the better performance of the presented filter.
文摘In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments.