期刊文献+
共找到79,146篇文章
< 1 2 250 >
每页显示 20 50 100
Uniqueness Results for Meromorphic Functions Involving Differential-Difference Polynomials and Shared Values
1
作者 Hongyan XU Rana MONDAL Imrul KAISH 《Journal of Mathematical Research with Applications》 2025年第3期304-328,共25页
Throughout this work,we explore the uniqueness properties of meromorphic functions concerning their interactions with complex differential-difference polynomial.Under the condition of finite order,we establish three d... Throughout this work,we explore the uniqueness properties of meromorphic functions concerning their interactions with complex differential-difference polynomial.Under the condition of finite order,we establish three distinct uniqueness results for a meromorphic function f associated with the differential-difference polynomial L_(η)^(n)f=Σ_(k=0)^(n)a_(k)f (z+k_(η))+a_(-1)f′.These results lead to a refined characterization of f (z)≡L_(η)^(n)f (z).Several illustrative examples are provided to demonstrate the sharpness and precision of the results obtained in this study. 展开更多
关键词 meromorphic function differential-difference polynomials Nevanlinna theory UNIQUENESS value sharing
原文传递
Entire Solutions of Fermat-Type Partial Differential-Difference Equations in C^(2)
2
作者 Caoqiang TANG Zhigang HUANG 《Journal of Mathematical Research with Applications》 2025年第1期56-72,共17页
In this paper,we mainly investigate the forms of entire solutions for certain Fermattype partial differential-difference equations in C^(2)by using Nevanlinna’s theory of several complex variables.
关键词 Fermat-type entire solution partial differential-difference equation
原文传递
Applications of Jacobi Elliptic Function Expansion Method for Nonlinear Differential-Difference Equations 被引量:9
3
作者 XUGui-Qiong LIZhi-Bin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3期385-388,共4页
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat... The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition. 展开更多
关键词 nonlinear differential-difference equation Jacobi elliptic function periodic wave solution
在线阅读 下载PDF
Exact Solutions Expressible in Rational Formal Hyperbolic and Elliptic Functions for Nonlinear Differential-Difference Equation 被引量:3
4
作者 BAI Cheng-Jie ZHAO Hong HAN Ji-Guang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第8期303-308,共6页
A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations... A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, diseretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple. 展开更多
关键词 nonlinear differential-difference equations new approach exact solutions
在线阅读 下载PDF
On entire solutions of some Fermat type differential-difference equations
5
作者 LONG Jian-ren QIN Da-zhuan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期69-88,共20页
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ... On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14]. 展开更多
关键词 entire solutions differential-difference equations EXISTENCE finite order
在线阅读 下载PDF
THE INTERIOR LAYER FOR A NONLINEAR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATION 被引量:2
6
作者 王爱峰 倪明康 《Acta Mathematica Scientia》 SCIE CSCD 2012年第2期695-709,共15页
In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formu... In this article, the interior layer for a second order nonlinear singularly perturbed differential-difference equation is considered. Using the methods of boundary function and fractional steps, we construct the formula of asymptotic expansion and point out that the boundary layer at t = 0 has a great influence upon the interior layer at t = a. At the same time, on the basis of differential inequality techniques, the existence of the smooth solution and the uniform validity of the asymptotic expansion are proved. Finally, an example is given to demonstrate the effectiveness of our result. The result of this article is new and it complements the previously known ones. 展开更多
关键词 differential-difference equation interior layer asymptotic expansion bound-ary function
在线阅读 下载PDF
Traveling Wave Solutions for Nonlinear Differential-Difference Equations of Rational Types 被引量:2
7
作者 smail Aslan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第1期39-45,共7页
Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried ... Differential-difference equations are considered to be hybrid systems because the spatial variable n is discrete while the time t is usually kept continuous.Although a considerable amount of research has been carried out in the field of nonlinear differential-difference equations,the majority of the results deal with polynomial types.Limited research has been reported regarding such equations of rational type.In this paper we present an adaptation of the(G /G)-expansion method to solve nonlinear rational differential-difference equations.The procedure is demonstrated using two distinct equations.Our approach allows one to construct three types of exact traveling wave solutions(hyperbolic,trigonometric,and rational) by means of the simplified form of the auxiliary equation method with reduced parameters.Our analysis leads to analytic solutions in terms of topological solitons and singular periodic functions as well. 展开更多
关键词 differential-difference equations (G′/G)-expansion method exact solutions traveling wave solu-tions
原文传递
A New Expanded Method for Solving Nonlinear Differential-difference Equation 被引量:1
8
作者 张善卿 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第4期509-512,共4页
A new expanded approach is presented to find exact solutions of nonlinear differential-difference equations. As its application, the soliton solutions and periodic solutions of a lattice equation are obtained.
关键词 differential-difference equation exact solution symbolic computation
原文传递
Exact solutions of the nonlinear differential-difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete(G'/G)-expansion method 被引量:1
9
作者 Sadou Abdoulkary Alidou Mohamadou +1 位作者 Ousmanou Dafounansou Serge Yamigno Doka 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期117-123,共7页
We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve ... We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete(G /G)-expansion method, we solve the nonlinear differential–difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions. 展开更多
关键词 nonlinear transmission line discrete(G /G)-expansion method solitary waves
原文传递
Periodic Solutions for a Class of Nonlinear Differential-Difference Equations
10
作者 LIU Shi-Kuo FU Zun-Tao +1 位作者 WANG Zhang-Gui LIU Shi-Da 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第5期1155-1158,共4页
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for three nonlinear differential-difference equations are obtained.
关键词 Jacobian elliptic function periodic solutions nonlinear differential-difference equation
在线阅读 下载PDF
A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking:A Tool for Exploring the Impact of Changing Climate on Mid-to-High Latitude Weather Extremes 被引量:1
11
作者 Dehai LUO Wenqi ZHANG Binhe LUO 《Advances in Atmospheric Sciences》 2025年第10期2018-2035,共18页
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and... A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread. 展开更多
关键词 nonlinear Schrödinger equation nonlinear multi-scale interaction model of atmospheric blocking meridional background potential vorticity gradient climate change mid-to-high latitude weather extremes
在线阅读 下载PDF
New exact solutions of nonlinear differential-difference equations with symbolic computation
12
作者 熊守全 夏铁成 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期415-419,共5页
In this paper, the Toda equation and the discrete nonlinear Schrdinger equation with a saturable nonlinearity via the discrete " (G′/G")-expansion method are researched. As a result, with the aid of the symbolic ... In this paper, the Toda equation and the discrete nonlinear Schrdinger equation with a saturable nonlinearity via the discrete " (G′/G")-expansion method are researched. As a result, with the aid of the symbolic computation, new hyperbolic function solution and trigonometric function solution with parameters of the Toda equation are obtained. At the same time, new envelop hyperbolic function solution and envelop trigonometric function solution with parameters of the discrete nonlinear Schro¨dinger equation with a saturable nonlinearity are obtained. This method can be applied to other nonlinear differential-difference equations in mathematical physics. 展开更多
关键词 discrete ("G′/G")-expansion method Toda equation discrete nonlinear Schrdinger equation saturable nonlinearity hyperbolic function solution trigonometric function solution
在线阅读 下载PDF
Adomian Decomposition Method for Nonlinear Differential-Difference Equation
13
作者 WU Lei ZONG Feng-De ZHANG Jie-Fang Institute of Nonlinear Physics,Zhejiang Normal University,Jinhua 321004,China 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第12期983-986,共4页
Adomian decomposition method is applied to find the analytical and numerical solutions for the discretizedmKdV equation.A numerical scheme is proposed to solve the long-time behavior of the discretized mKdV equation.T... Adomian decomposition method is applied to find the analytical and numerical solutions for the discretizedmKdV equation.A numerical scheme is proposed to solve the long-time behavior of the discretized mKdV equation.The procedure presented here can be used to solve other differential-difference equations. 展开更多
关键词 Adomian decomposition method discretized nonlinear equation
在线阅读 下载PDF
Recent advancements of nonlinear dynamics in mode coupled microresonators:a review 被引量:1
14
作者 Xuefeng WANG Zhan SHI +3 位作者 Qiqi YANG Yuzhi CHEN Xueyong WEI Ronghua HUAN 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期209-232,共24页
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup... Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field. 展开更多
关键词 mode coupling micro-electro-mechanical system(MEMS)resonator nonlinear dynamics
在线阅读 下载PDF
Normalized Solutions of Nonlinear Choquard Equations with Nonconstant Potential
15
作者 LI Nan XU Liping 《应用数学》 北大核心 2025年第1期14-29,共16页
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ... In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods. 展开更多
关键词 nonlinear Choquard equation Potential function Variational method Normalized solution
在线阅读 下载PDF
APPROXIMATE CONTROLLABILITY OF NONLINEAR EVOLUTION FRACTIONAL CONTROL SYSTEM WITH DELAY 被引量:1
16
作者 Kamla Kant MISHRA Shruti DUBEY 《Acta Mathematica Scientia》 2025年第2期553-568,共16页
This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreov... This article studies the existence and uniqueness of the mild solution of a family of control systems with a delay that are governed by the nonlinear fractional evolution differential equations in Banach spaces.Moreover,we establish the controllability of the considered system.To do so,first,we investigate the approximate controllability of the corresponding linear system.Subsequently,we prove the nonlinear system is approximately controllable if the corresponding linear system is approximately controllable.To reach the conclusions,the theory of resolvent operators,the Banach contraction mapping principle,and fixed point theorems are used.While concluding,some examples are given to demonstrate the efficacy of the proposed results. 展开更多
关键词 nonlinear fractional differential equation Caputo fractional derivative mild solution existence and uniqueness theorems approximate controllability
在线阅读 下载PDF
On the uniqueness of participation factors in nonlinear dynamical systems
17
作者 XIA Tian-wei SUN Kai 《控制理论与应用》 北大核心 2025年第11期2147-2155,共9页
In the modal analysis and control of nonlinear dynamical systems,participation factors(PFs)of state variables with respect to a critical or selected mode serve as a pivotal tool for simplifying stability studies by fo... In the modal analysis and control of nonlinear dynamical systems,participation factors(PFs)of state variables with respect to a critical or selected mode serve as a pivotal tool for simplifying stability studies by focusing on a subset of highly influential state variables.For linear systems,PFs are uniquely determined by the mode’s composition and shape,which are defined by the system’s left and right eigenvectors,respectively.However,the uniqueness of other types of PFs has not been thoroughly addressed in literatures.This paper establishes sufficient conditions for the uniqueness of nonlinear PFs and five other PF variants,taking into account uncertain scaling factors in a mode’s shape and composition.These scaling factors arise from variations in the choice of physical units,which depend on the value ranges of real-world state variables.Understanding these sufficient conditions is essential for the correct application of PFs in practical stability analysis and control design. 展开更多
关键词 participation factor mode shape mode composition nonlinear system OSCILLATIONS
在线阅读 下载PDF
In situ stress inversion using nonlinear stress boundaries achieved by the bubbling method 被引量:1
18
作者 Xige Liu Chenchun Huang +3 位作者 Wancheng Zhu Joung Oh Chengguo Zhang Guangyao Si 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1510-1527,共18页
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha... Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries. 展开更多
关键词 In situ stress field Inversion method The bubbling method nonlinear stress boundary Multiple linear regression method
在线阅读 下载PDF
The DNN-based DBP scheme for nonlinear compensation and longitudinal monitoring of optical fiber links 被引量:1
19
作者 Feiyu Li Xian Zhou +3 位作者 Yuyuan Gao Jiahao Huo Rui Li Keping Long 《Digital Communications and Networks》 2025年第1期43-51,共9页
In this paper,a double-effect DNN-based Digital Back-Propagation(DBP)scheme is proposed and studied to achieve the Integrated Communication and Sensing(ICS)ability,which can not only realize nonlinear damage mitigatio... In this paper,a double-effect DNN-based Digital Back-Propagation(DBP)scheme is proposed and studied to achieve the Integrated Communication and Sensing(ICS)ability,which can not only realize nonlinear damage mitigation but also monitor the optical power and dispersion profile over multi-span links.The link status information can be extracted by the characteristics of the learned optical fiber parameters without any other measuring instruments.The efficiency and feasibility of this method have been investigated in different fiber link conditions,including various launch power,transmission distance,and the location and the amount of the abnormal losses.A good monitoring performance can be obtained while the launch optical power is 2 dBm which does not affect the normal operation of the optical communication system and the step size of DBP is 20 km which can provide a better distance resolution.This scheme successfully detects the location of single or multiple optical attenuators in long-distance multi-span fiber links,including different abnormal losses of 2 dB,4 dB,and 6 dB in 360 km and serval combinations of abnormal losses of(1 dB,5 dB),(3 dB,3 dB),(5 dB,1 dB)in 360 km and 760 km.Meanwhile,the transfer relationship of the estimated coefficient values with different step sizes is further investigated to reduce the complexity of the fiber nonlinear damage compensation.These results provide an attractive approach for precisely sensing the optical fiber link status information and making correct strategies timely to ensure optical communication system operations. 展开更多
关键词 Digital back-propagation Deep neural network nonlinear interference mitigation Optical fiber communications Power profile estimation Split-step fourier method
在线阅读 下载PDF
Synthesis and third‑order nonlinear optical property of Ti_(4)L_(6) cage‑based metal‑organic framework
20
作者 CHEN Ruiyan HE Yanping ZHANG Jian 《无机化学学报》 北大核心 2025年第10期2149-2156,共8页
Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imida... Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909. 展开更多
关键词 titanium-organic cage metal-organic framework crystal structure nonlinear optics
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部