The boundary value problem for the nonlinear parabolic system is solved by the finite difference method with nonuniform meshes. The existence and a priori estemates of the discrete vector solutions for the general dif...The boundary value problem for the nonlinear parabolic system is solved by the finite difference method with nonuniform meshes. The existence and a priori estemates of the discrete vector solutions for the general difference schemes with unequal meshsteps are established by the fixed point technique. The absolute and relative convergence of the discrete vector solution are justified by a series of a priori estimates. The analysis of mentioned problems are based on the assumption of heuristic character concerning the existence of the unique smooth solution for the original problem of the nonlinear parabolic system.展开更多
文摘The boundary value problem for the nonlinear parabolic system is solved by the finite difference method with nonuniform meshes. The existence and a priori estemates of the discrete vector solutions for the general difference schemes with unequal meshsteps are established by the fixed point technique. The absolute and relative convergence of the discrete vector solution are justified by a series of a priori estimates. The analysis of mentioned problems are based on the assumption of heuristic character concerning the existence of the unique smooth solution for the original problem of the nonlinear parabolic system.