The control objective of the forced-circulation evaporation process of alumina production is not only to avoid large fluctuations of the level, but also to ensure the product density to track its setpoint quickly. Due...The control objective of the forced-circulation evaporation process of alumina production is not only to avoid large fluctuations of the level, but also to ensure the product density to track its setpoint quickly. Due to the existence of strong coupling between the level loop and the product density loop, and high nonlinearities in the process, the conventional control strategy cannot achieve satisfactory control performance, and thus the production demand cannot be met. In this paper, an intelligent decoupling PID controller including conventional PID controllers, a decoupling compensator and a neural feedforward compensator is proposed. The parameters of such controller are determined by generalized predictive control law. Real-time experiment results show that the proposed method can decouple the loops effectively and thus improve the evaporation efficiency.展开更多
Identification of magnitude and orientation for spatially applied loading is highly desired in the fields of not only the machinery components but also human-machine interaction.Despite the fact that the 3-axis force ...Identification of magnitude and orientation for spatially applied loading is highly desired in the fields of not only the machinery components but also human-machine interaction.Despite the fact that the 3-axis force sensor with different structures has been proposed to measure the spatial force,there are still some common limitations including the multi-step manufacturing-assembly processes and complicated testing of decoupling calibration.Here,we propose a rapid fabrication strategy with low-cost to achieve high-precision 3-axis force sensors.The sensor is designed to compose of structural Maltese cross base and sensing units.It is directly fabricated within one step by a hybrid 3D printing technology combining deposition modeling(FDM)with direct-ink-writing(DIW).In particular,a machine learning(ML)model is used to convert the strain signal to the force components.Instead of a mount of calibration tests,this ML model is trained by sufficient simulation data based on programmed batch finite element modeling.This sensor is capable of continuously identifying a spatial force with varying magnitude and orientation,which successfully quantify the applied force of traditional Chinese medicine physiotherapy including Gua Sha and massage.This work provides insight for design and rapid fabrication of multi-axis force sensors,as well as potential applications.展开更多
Nonlinear ultrasonic imaging techniques in pulse-echo configuration have recently shown their potential to allow the effective separation of nonlinear and linear features in a nonlinear image.In this study,two ultraso...Nonlinear ultrasonic imaging techniques in pulse-echo configuration have recently shown their potential to allow the effective separation of nonlinear and linear features in a nonlinear image.In this study,two ultrasonic phased arrays are implemented to produce an image of elastic nonlinearity through the parallel-sequential subtraction of the coherently scattered components in the through-transmission acoustic field at the transmission or subharmonic frequency.In parallel mode,a physical focus at each pixel is achieved by firing the transmitters with a predefined delay law.In sequential mode,each transmitter is fired in sequence and all the receivers are employed to capture the data simultaneously.This full matrix captured data can be post-processed and focused synthetically at the target area.The images of parallel focusing and sequential focusing are expected to be linearly identical and hence any differences remained on the subtracted image can be related to the nonlinearities arising from the defects.Therefore,the imaging metric here is defined as the difference between parallel and sequentially focused amplitudes obtained from forward coherently scattered fields at each target point.Additionally,the negative influences due to the instrumentation nonlinearities are investigated by studying the remaining relative phase and amplitude at undamaged pixels.A compensation method is implemented to suppress these noises,significantly enhancing the selectivity of nonlinear scattering features.The proposed techniques are then implemented to monitor fatigue crack growth in order to explore the capability of these methods as measures of elastic nonlinearity induced by different sizes of small closed cracks.The promising results suggest that nonlinear imaging can be used to monitor crack growth and improve the detectability at early stages.展开更多
基金Supported by the National Natural Science Foundation of China(61473063)the National Key Technology R&D Program(2012BAJ26B01)+2 种基金the China Postdoctoral Science Foundation(2014M552040,2014M561250,2015M571328)the Special Fund for Agroscientific Research in the Public Interest(201503136)the Key Scientific and Technological Project of Liaoning Province(201500834)
文摘The control objective of the forced-circulation evaporation process of alumina production is not only to avoid large fluctuations of the level, but also to ensure the product density to track its setpoint quickly. Due to the existence of strong coupling between the level loop and the product density loop, and high nonlinearities in the process, the conventional control strategy cannot achieve satisfactory control performance, and thus the production demand cannot be met. In this paper, an intelligent decoupling PID controller including conventional PID controllers, a decoupling compensator and a neural feedforward compensator is proposed. The parameters of such controller are determined by generalized predictive control law. Real-time experiment results show that the proposed method can decouple the loops effectively and thus improve the evaporation efficiency.
基金supported by the National Natural Science Foundation of China [12372078]Sixth Phase of Jiangsu Province"333 High Level Talent Training Project"Second Level Talents State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics [MCMS-E-0422G04].
文摘Identification of magnitude and orientation for spatially applied loading is highly desired in the fields of not only the machinery components but also human-machine interaction.Despite the fact that the 3-axis force sensor with different structures has been proposed to measure the spatial force,there are still some common limitations including the multi-step manufacturing-assembly processes and complicated testing of decoupling calibration.Here,we propose a rapid fabrication strategy with low-cost to achieve high-precision 3-axis force sensors.The sensor is designed to compose of structural Maltese cross base and sensing units.It is directly fabricated within one step by a hybrid 3D printing technology combining deposition modeling(FDM)with direct-ink-writing(DIW).In particular,a machine learning(ML)model is used to convert the strain signal to the force components.Instead of a mount of calibration tests,this ML model is trained by sufficient simulation data based on programmed batch finite element modeling.This sensor is capable of continuously identifying a spatial force with varying magnitude and orientation,which successfully quantify the applied force of traditional Chinese medicine physiotherapy including Gua Sha and massage.This work provides insight for design and rapid fabrication of multi-axis force sensors,as well as potential applications.
基金the Young Talent Support Program of China Association for Science and Technology(Grant No.[2020]No.87)the Science and Technology Major Project of Anhui Province(Grant No.201903a05020010)+2 种基金the Key Research and Development Plan of Anhui Province(Grant No.202004a05020003)the Anhui Provincial Natural Science Foundation(Grant No.2008085J24)the Doctoral Science and Technology Foundation of Hefei General Machinery Research Institute(Grant No.2019010381)。
文摘Nonlinear ultrasonic imaging techniques in pulse-echo configuration have recently shown their potential to allow the effective separation of nonlinear and linear features in a nonlinear image.In this study,two ultrasonic phased arrays are implemented to produce an image of elastic nonlinearity through the parallel-sequential subtraction of the coherently scattered components in the through-transmission acoustic field at the transmission or subharmonic frequency.In parallel mode,a physical focus at each pixel is achieved by firing the transmitters with a predefined delay law.In sequential mode,each transmitter is fired in sequence and all the receivers are employed to capture the data simultaneously.This full matrix captured data can be post-processed and focused synthetically at the target area.The images of parallel focusing and sequential focusing are expected to be linearly identical and hence any differences remained on the subtracted image can be related to the nonlinearities arising from the defects.Therefore,the imaging metric here is defined as the difference between parallel and sequentially focused amplitudes obtained from forward coherently scattered fields at each target point.Additionally,the negative influences due to the instrumentation nonlinearities are investigated by studying the remaining relative phase and amplitude at undamaged pixels.A compensation method is implemented to suppress these noises,significantly enhancing the selectivity of nonlinear scattering features.The proposed techniques are then implemented to monitor fatigue crack growth in order to explore the capability of these methods as measures of elastic nonlinearity induced by different sizes of small closed cracks.The promising results suggest that nonlinear imaging can be used to monitor crack growth and improve the detectability at early stages.