In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
Dear Editor,This letter investigates the fuzzy prescribed-time control(PTC)problem for a class of uncertain pure feedback nonlinear systems.Firstly,a novel prescribed-time stability lemma is introduced,which plays a c...Dear Editor,This letter investigates the fuzzy prescribed-time control(PTC)problem for a class of uncertain pure feedback nonlinear systems.Firstly,a novel prescribed-time stability lemma is introduced,which plays a critical role in stability analysis.Unlike existing PTC algorithms,where the nonlinear functions are typically known or satisfy a linear growth condition,our approach does not require such assumptions.To address these unknown factors,fuzzy logic systems(FLSs)are employed.Based on the new prescribed-time stability lemma,it is proven that the controller and all system states converge to the origin within the prescribed time and remain there.Finally,the effectiveness of the proposed algorithm is validated through a simulation example.展开更多
Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous sta...Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous state monitoring. In contrast to the existing self-triggered control method, novel self-triggered mechanism(STM) is proposed by incorporating a waiting time for stabilizing impulses. This allows for direct prediction of the next impulsive instant.展开更多
This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rat...This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rather than conducting isolated analyses,especially in the presence of frequently encountered unknown actuator faults,becomes an interesting yet challenging problem.First,to enhance the tracking performance,Tunnel Prescribed Performance(TPP)is proposed to provide narrow tunnel-shape constraints instead of the common over-relaxed trumpet-shape performance constraints.A pair of non-negative signals produced by an auxiliary system is then integrated into TPP,resulting in Saturation-tolerant Prescribed Performance(SPP)with flexible performance boundaries that account for input saturation situations.Namely,SPP can appropriately relax TPP when needed and decrease the conservatism of control design.With the help of SPP,our developed Saturation-tolerant Prescribed Control(SPC)guarantees finite-time convergence while satisfying both input saturation and performance constraints,even under serious actuator faults.Simulations are conducted to illustrate the effectiveness of the proposed SPC.展开更多
This paper considers adaptive event-triggered stabilization for a class of uncertain time-varying nonlinear systems.Remarkably,the systems contain intrinsic time-varying unknown parameters which are allowed to be non-...This paper considers adaptive event-triggered stabilization for a class of uncertain time-varying nonlinear systems.Remarkably,the systems contain intrinsic time-varying unknown parameters which are allowed to be non-differentiable and in turn can be fast-varying.Moreover,the systems admit unknown control directions.To counteract the different uncertainties,more than one compensation mechanism has to be incorporated.However,in the context of event-triggered control,ensuring the effectiveness of these compensation mechanisms under reduced execution necessitates delicate design and analysis.This paper proposes a tight and powerful strategy for adaptive event-triggered control(ETC)by integrating the state-of-the-art adaptive techniques.In particular,the strategy substantially mitigates the conservatism caused by repetitive inequality-based treatments of uncertainties.Specifically,by leveraging the congelation-of-variables method and tuning functions,the conservatism in the treatment of the fast-varying parameters is significantly reduced.With multiple Nussbaum functions employed to handle unknown control directions,a set of dynamic compensations is designed to counteract unknown amplitudes of control coefficients without relying on inequality-based treatments.Moreover,a dedicated dynamic compensation is introduced to deal with the control coefficient coupled with the execution error,based on which a relativethreshold event-triggering mechanism(ETM)is rigorously validated.It turns out that the adaptive event-triggered controller achieves the closed-loop convergence while guaranteeing a uniform lower bound for inter-execution times.Simulation results verify the effectiveness and superiority of the proposed strategy.展开更多
This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires t...This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme.展开更多
This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder ma...This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.展开更多
This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems posses...This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.展开更多
In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is co...In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network(NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control,respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle.The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.展开更多
In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal cas...In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.展开更多
This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and no...This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.展开更多
The problem of high-performance tracking controlfor the lower-triangular systems with unknown sign-switchingvirtual control coefficients as well as unmatched disturbances isinvestigated in this paper.Instead of the on...The problem of high-performance tracking controlfor the lower-triangular systems with unknown sign-switchingvirtual control coefficients as well as unmatched disturbances isinvestigated in this paper.Instead of the online estimation algorithm,the sliding mode method and the Nussbaum gain technique,a group of orientation functions are employed to handlethe unknown sign-switching virtual control coefficients.The controllaw is combined with the orientation functions and the barrierfunctions lumped in a recursive manner.It achieves outputtracking with the preassigned rate,overshoot,and accuracy.Incontrast with the existing solutions,it is effective for the nearlymodel-free case,with the requirement for information of neitherthe system nonlinearities nor their bounding functions of theplant,nor the bounds of the disturbances.In addition,our controllerexhibits significant simplicity,without parameter identification,disturbance estimation,function approximation,derivativecalculation,dynamic surfaces,or command filtering.Twosimulation examples are conducted to substantiate the efficacyand advantages of our approach.展开更多
The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-com...The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-compensation technique for converting the original nonaffine dynamics into affine dynamics. Secondly, the paper derives a stability criterion linking the original nonaffine system and the auxiliary system, demonstrating that the obtained optimal policies from the auxiliary system can achieve the robust controller of the nonaffine system. Thirdly, an online adaptive dynamic programming(ADP) algorithm is designed for approximating the optimal solution of the Hamilton–Jacobi–Bellman(HJB) equation.Moreover, the gradient descent approach and projection approach are employed for updating the actor-critic neural network(NN) weights, with the algorithm's convergence being proven. Then, the uniformly ultimately bounded stability of state is guaranteed. Finally, in simulation, some examples are offered for validating the effectiveness of this presented approach.展开更多
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa...In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.展开更多
This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challen...This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challenges inherent in conventional neural network training,an improved self-organizing radial basis function neural network(SRBFNN)with an input-dependent variable structure is developed.Furthermore,a novel selforganizing RBFNN-based observer is introduced to estimate system states across all dimensions.Leveraging the reconstructed states,the proposed adaptive controller effectively compensates for all uncertainties,including estimation errors in the observer,ensuring accurate state tracking with reduced control effort.The uniform ultimate boundedness of all closed-loop signals and tracking errors is rigorously established via Lyapunov stability analysis.Finally,simulations on two different nonlinear systems comprehensively validate the effectiveness and superiority of the proposed control approach.展开更多
The adaptive H_(∞) finite-time boundedness control problem is studied for a set of nonlinear singular Hamiltonian system(NSHS)in this article.Under an appropriate adaptive state feedback,the NSHS can be equivalently ...The adaptive H_(∞) finite-time boundedness control problem is studied for a set of nonlinear singular Hamiltonian system(NSHS)in this article.Under an appropriate adaptive state feedback,the NSHS can be equivalently transformed into a differential-algebraic system.Next,it is proved that the state feedback can be used as an adaptive H_(∞) finite-time boundedness controller of NSHS.Finally,the effectiveness of the controller designed is verified by an illustrative example of a nonlinear singular circuit system.展开更多
We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditio...We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.展开更多
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin...The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.展开更多
In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonli...In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method.展开更多
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金supported by the National Natural Science Foundation of China(U20A20187,U22A2050)the Science Fund of Hebei Province(F2024203134,F2023203100)+3 种基金the Science and Technology Development Grant of Hebei Province(20311803D)Hebei Innovation Capability Improvement Plan project(22567619H)Basic Research Project of Shijiazhuang(241791007A)the China Scholarship Council(CSC 202308130190).
文摘Dear Editor,This letter investigates the fuzzy prescribed-time control(PTC)problem for a class of uncertain pure feedback nonlinear systems.Firstly,a novel prescribed-time stability lemma is introduced,which plays a critical role in stability analysis.Unlike existing PTC algorithms,where the nonlinear functions are typically known or satisfy a linear growth condition,our approach does not require such assumptions.To address these unknown factors,fuzzy logic systems(FLSs)are employed.Based on the new prescribed-time stability lemma,it is proven that the controller and all system states converge to the origin within the prescribed time and remain there.Finally,the effectiveness of the proposed algorithm is validated through a simulation example.
基金supported by the National Natural Science Foundation of China(62403393,12202058,62103118)the China Postdoctoral Science Foundation(2021T140160,2023 T160051)the Natural Science Foundation of Chongqing(CSTB 2023NSCQ-MSX0152)
文摘Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous state monitoring. In contrast to the existing self-triggered control method, novel self-triggered mechanism(STM) is proposed by incorporating a waiting time for stabilizing impulses. This allows for direct prediction of the next impulsive instant.
基金supported by the National Research Foundation Singapore under its AI Singapore Programme(Award Number:[AISG2-GC-2023-007]).
文摘This paper addresses the tracking control problem of a class of multiple-input–multiple-output nonlinear systems subject to actuator faults.Achieving a balance between input saturation and performance constraints,rather than conducting isolated analyses,especially in the presence of frequently encountered unknown actuator faults,becomes an interesting yet challenging problem.First,to enhance the tracking performance,Tunnel Prescribed Performance(TPP)is proposed to provide narrow tunnel-shape constraints instead of the common over-relaxed trumpet-shape performance constraints.A pair of non-negative signals produced by an auxiliary system is then integrated into TPP,resulting in Saturation-tolerant Prescribed Performance(SPP)with flexible performance boundaries that account for input saturation situations.Namely,SPP can appropriately relax TPP when needed and decrease the conservatism of control design.With the help of SPP,our developed Saturation-tolerant Prescribed Control(SPC)guarantees finite-time convergence while satisfying both input saturation and performance constraints,even under serious actuator faults.Simulations are conducted to illustrate the effectiveness of the proposed SPC.
基金supported in part by the National Natural Science Foundation of China(62033007)the Fundamental Research Program of Shandong Province(ZR2023ZD37).
文摘This paper considers adaptive event-triggered stabilization for a class of uncertain time-varying nonlinear systems.Remarkably,the systems contain intrinsic time-varying unknown parameters which are allowed to be non-differentiable and in turn can be fast-varying.Moreover,the systems admit unknown control directions.To counteract the different uncertainties,more than one compensation mechanism has to be incorporated.However,in the context of event-triggered control,ensuring the effectiveness of these compensation mechanisms under reduced execution necessitates delicate design and analysis.This paper proposes a tight and powerful strategy for adaptive event-triggered control(ETC)by integrating the state-of-the-art adaptive techniques.In particular,the strategy substantially mitigates the conservatism caused by repetitive inequality-based treatments of uncertainties.Specifically,by leveraging the congelation-of-variables method and tuning functions,the conservatism in the treatment of the fast-varying parameters is significantly reduced.With multiple Nussbaum functions employed to handle unknown control directions,a set of dynamic compensations is designed to counteract unknown amplitudes of control coefficients without relying on inequality-based treatments.Moreover,a dedicated dynamic compensation is introduced to deal with the control coefficient coupled with the execution error,based on which a relativethreshold event-triggering mechanism(ETM)is rigorously validated.It turns out that the adaptive event-triggered controller achieves the closed-loop convergence while guaranteeing a uniform lower bound for inter-execution times.Simulation results verify the effectiveness and superiority of the proposed strategy.
基金supported by the National Natural Science Foundation of China under Grant 62073190the Science Center Program of National Natural Science Foundation of China under Grant 62188101.
文摘This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme.
基金supported by the Autonomous Innovation Team Foundation for“20 Items of the New University”of Jinan City(202228087)the National Natural Science Foundation of China(62073190).
文摘This paper studies global stabilization via predictor-based sampled-data output feedback for a class of feedforward nonlinear time-delay systems.Note that the traditional sampled-data observer via zero-order holder may result in the performance degradation of the observer.In this paper,an improved predictor-based observer is designed to compensate for the influence of the unmeasurable states,sampling errors and output delay.In addition,a sampled-data output-feedback controller is also constructed using the gain scaling technique.By the Lyapunov-Krasovskii functional method,the global exponential stability of the resulting closed-loop system can be guaranteed under some sufficient conditions.The simulation results are provided to demonstrate the main results.
基金supported by the fund of Beijing Municipal Commission of Education(KM202210017001 and 22019821001)the Natural Science Foundation of Henan Province(222300420253).
文摘This paper discusses the design of event-triggered output-feedback controller for a class of nonlinear time-delay systems with multiple uncertainties. In sharp contrast to previous works, the considered systems possess two important characteristics: (i) The uncertain nonlinear terms meet the linearly unmeasurable-states dependent growth with the growth rate being an unknown function of the input and output. (ii) There exist input matching uncertainty and unknown measurement sensitivity. By introducing a single dynamic gain and employing a cleverly devised event-triggering mechanism (ETM), we design a new gain-based event-triggered output-feedback controller, which globally regulates all states of the considered systems and maintains global boundedness of the closed-loop system. Furthermore, the estimation of input matching uncertainty achieves convergence towards its actual value, and Zeno behavior does not happen. Two simulation examples including a practical one show that the proposed approach is effective.
基金supported in part by the National Natural Science Foundation of China(62222301,62373012,62473012,62021003)the National Science and Technology Major Project(2021ZD0112302,2021ZD0112301)the Beijing Natural Science Foundation(JQ19013)
文摘In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network(NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control,respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle.The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.
基金supported in part the National Key Research and Development Program of China(2021YFC2902703)Open Foundation of State Key Laboratory of Process Automation in Mining&Metallurgy/Beijing Key Laboratory of Process Automation in Mining&Metallurgy(BGRIMM-KZSKL-2022-6)the National Natural Science Foundation of China(62173078,61873049).
文摘In this work,a self-healing predictive control method for discrete-time nonlinear systems is presented to ensure the system can be safely operated under abnormal states.First,a robust MPC controller for the normal case is constructed,which can drive the system to the equilibrium point when the closed-loop states are in the predetermined safe set.In this controller,the tubes are built based on the incremental Lyapunov function to tighten nominal constraints.To deal with the infeasible controller when abnormal states occur,a self-healing predictive control method is further proposed to realize self-healing by driving the system towards the safe set.This is achieved by an auxiliary softconstrained recovery mechanism that can solve the constraint violation caused by the abnormal states.By extending the discrete-time robust control barrier function theory,it is proven that the auxiliary problem provides a predictive control barrier bounded function to make the system asymptotically stable towards the safe set.The theoretical properties of robust recursive feasibility and bounded stability are further analyzed.The efficiency of the proposed controller is verified by a numerical simulation of a continuous stirred-tank reactor process.
基金supported in part by the National Key Research and Development Program of China(2023YFA1011803)the National Natural Science Foundation of China(62273064,61991400/61991403,61933012,62250710167,62203078)+2 种基金Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0588)the Central University Project(2023CDJKYJH047)the Innovation Support Program for International Students Returning to China(cx2022016)
文摘This paper investigates the prescribed-time tracking control problem for a class of multi-input multi-output(MIMO)nonlinear strict-feedback systems subject to non-vanishing uncertainties. The inherent unmatched and non-vanishing uncertainties make the prescribed-time control problem become much more nontrivial. The solution to address the challenges mentioned above involves incorporating a prescribed-time filter, as opposed to a finite-time filter, and formulating a prescribed-time Lyapunov stability lemma(Lemma 5). The prescribed-time Lyapunov stability lemma is based on time axis shifting time-varying yet bounded gain, which establishes a novel link between the fixed-time and prescribed-time control method. This allows the restriction condition that the time-varying gain function must satisfy as imposed in most exist prescribed-time control works to be removed. Under the proposed control method, the desire trajectory is ensured to closely track the output of the system in prescribed time. The effectiveness of the theoretical results are verified through numerical simulation.
基金supported in part by the National Natural Science Foundation of China(61991404,62473089)the Research Program of the Liaoning Liaohe Laboratory(LLL23ZZ-05-01)+6 种基金the Key Research and Development Program of Liaoning Province of China(2023JH26/10200011)the 111 Project 2.0 of China(B08015)the National Key Research and Development Program of China(2022YFB3305905)the Xingliao Talent Program of Liaoning Province of China(XLYC2203130)the Natural Science Foundation of Liaoning Province of China(2024JH3/10200012,2023-MS-087)the Open Research Project of the State Key Laboratory of Industrial Control Technology of China(ICT2024B12)the Fundamental Research Funds for the Central Universities of China(N2108003,N2424004).
文摘The problem of high-performance tracking controlfor the lower-triangular systems with unknown sign-switchingvirtual control coefficients as well as unmatched disturbances isinvestigated in this paper.Instead of the online estimation algorithm,the sliding mode method and the Nussbaum gain technique,a group of orientation functions are employed to handlethe unknown sign-switching virtual control coefficients.The controllaw is combined with the orientation functions and the barrierfunctions lumped in a recursive manner.It achieves outputtracking with the preassigned rate,overshoot,and accuracy.Incontrast with the existing solutions,it is effective for the nearlymodel-free case,with the requirement for information of neitherthe system nonlinearities nor their bounding functions of theplant,nor the bounds of the disturbances.In addition,our controllerexhibits significant simplicity,without parameter identification,disturbance estimation,function approximation,derivativecalculation,dynamic surfaces,or command filtering.Twosimulation examples are conducted to substantiate the efficacyand advantages of our approach.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62103408)Beijing Nova Program (Grant No. 20240484516)the Fundamental Research Funds for the Central Universities (Grant No. KG16314701)。
文摘The paper develops a robust control approach for nonaffine nonlinear continuous systems with input constraints and unknown uncertainties. Firstly, this paper constructs an affine augmented system(AAS) within a pre-compensation technique for converting the original nonaffine dynamics into affine dynamics. Secondly, the paper derives a stability criterion linking the original nonaffine system and the auxiliary system, demonstrating that the obtained optimal policies from the auxiliary system can achieve the robust controller of the nonaffine system. Thirdly, an online adaptive dynamic programming(ADP) algorithm is designed for approximating the optimal solution of the Hamilton–Jacobi–Bellman(HJB) equation.Moreover, the gradient descent approach and projection approach are employed for updating the actor-critic neural network(NN) weights, with the algorithm's convergence being proven. Then, the uniformly ultimately bounded stability of state is guaranteed. Finally, in simulation, some examples are offered for validating the effectiveness of this presented approach.
基金supported by the Zhejiang Provincial Natural Science Foundation(LY24F030011,LY23F030005)the National Natural Science Foundation of China(62373131).
文摘In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.
基金supported in part by the National Natural Science Foundation of China(62033008,62188101,62173343,62073339)the Natural Science Foundation of Shandong Province of China(ZR2024MF072,ZR2022ZD34)the Research Fund for the Taishan Scholar Project of Shandong Province of China.
文摘This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challenges inherent in conventional neural network training,an improved self-organizing radial basis function neural network(SRBFNN)with an input-dependent variable structure is developed.Furthermore,a novel selforganizing RBFNN-based observer is introduced to estimate system states across all dimensions.Leveraging the reconstructed states,the proposed adaptive controller effectively compensates for all uncertainties,including estimation errors in the observer,ensuring accurate state tracking with reduced control effort.The uniform ultimate boundedness of all closed-loop signals and tracking errors is rigorously established via Lyapunov stability analysis.Finally,simulations on two different nonlinear systems comprehensively validate the effectiveness and superiority of the proposed control approach.
基金supported by the National Nature Science Foundation of China (61877028, 61773015).
文摘The adaptive H_(∞) finite-time boundedness control problem is studied for a set of nonlinear singular Hamiltonian system(NSHS)in this article.Under an appropriate adaptive state feedback,the NSHS can be equivalently transformed into a differential-algebraic system.Next,it is proved that the state feedback can be used as an adaptive H_(∞) finite-time boundedness controller of NSHS.Finally,the effectiveness of the controller designed is verified by an illustrative example of a nonlinear singular circuit system.
文摘We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.
文摘The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.
文摘In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method.