The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal...To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.展开更多
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s...In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.展开更多
The Spalart-Allmaras (S-A) turbulence model, the shear-stress transport (SST) turbulence model and their compressibility corrections are revaluated for hypersonic compression comer flows by using high-order differ...The Spalart-Allmaras (S-A) turbulence model, the shear-stress transport (SST) turbulence model and their compressibility corrections are revaluated for hypersonic compression comer flows by using high-order difference schemes. The compressibility effect of density gradient, pressure dilatation and turbulent Mach number is accounted. In order to reduce confusions between model uncertainties and discretization errors, the formally fifth-order explicit weighted compact nonlinear scheme (WCNS-E-5) is adopted for convection terms, and a fourth-order staggered central difference scheme is applied for viscous terms. The 15° and 34° compression comers at Mach number 9.22 are investigated. Numerical results show that the original SST model is superior to the original S-A model in the resolution of separated regions and predictions of wall pressures and wall heat-flux rates. The capability of the S-A model can be largely improved by blending Catris' and Shur's compressibility corrections. Among the three corrections of the SST model listed in the present paper, Catris' modification brings the best results. However, the dissipation and pressure dilatation corrections result in much larger separated regions than that of the experiment, and are much worse than the original SST model as well as the other two corrections. The correction of turbulent Mach number makes the separated region slightly smaller than that of the original SST model. Some results of low-order schemes are also presented. When compared to the results of the high-order schemes, the separated regions are smaller, and the peak wall pressures and peak heat-flux rates are lower in the region of the reattachment points.展开更多
The nonlinear evolution problem in nonparallel boundary layer stability was studied. The relative parabolized stability equations of nonlinear nonparallel boundary layer were derived. The developed numerical method, w...The nonlinear evolution problem in nonparallel boundary layer stability was studied. The relative parabolized stability equations of nonlinear nonparallel boundary layer were derived. The developed numerical method, which is very effective, was used to study the nonlinear evolution. of T-S disturbance wave at finite amplitudes. Solving nonlinear equations of different modes by using predictor-corrector and iterative approach, which is uncoupled between modes, improving computational accuracy by using high order compact differential scheme, satisfying normalization condition I determining tables of nonlinear terms at different modes, and implementing stably the spatial marching, were included in this method. With different initial amplitudes, the nonlinear evolution of T-S wave was studied. The nonlinear nonparallel results of examples compare with data of direct numerical simulations (DNS) using full Navier-Stokes equations.展开更多
Based on the method deriving dissipative compact linear schemes ( DCS), novel high-order dissipative weighted compact nonlinear schemes (DWCNS) are developed. By Fourier analysis, the dissipative and dispersive featur...Based on the method deriving dissipative compact linear schemes ( DCS), novel high-order dissipative weighted compact nonlinear schemes (DWCNS) are developed. By Fourier analysis, the dissipative and dispersive features of DWCNS are discussed. In view of the modified wave number, the DWCNS are equivalent to the fifth-order upwind biased explicit schemes in smooth regions and the interpolations at cell-edges dominate the accuracy of DWCNS. Boundary and near boundary schemes are developed and the asymptotic stabilities of DWCNS on both uniform and stretching grids are analyzed. The multi-dimensional implementations for Euler and Navier-Stokes equations are discussed. Several numerical inviscid and viscous results are given which show the good performances of the DWCNS for discontinuities capturing, high accuracy for boundary layer resolutions, good convergent rates (the root-mean-square of residuals approaching machine zero for solutions with strong shocks) and especially the damping effect on the spurious oscillations which were found in the solutions obtained by TVD and ENO schemes.展开更多
In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is de...In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme.展开更多
A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative metho...A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration.展开更多
The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008...The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied through numerical tests. Like most other shock capturing schemes, WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level. In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput. 31, 273–305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216–238], to improve the convergence to steady state solutions for WENO schemes, are generalized to the WCNS. Detailed numerical studies in one and two dimensional cases are performed. Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS. The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.展开更多
It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water eq...It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water equations in prebalanced forms.The scheme is proved to be well-balanced provided that the source term is treated appropriately as the advection term.Some numerical examples in oneand two-dimensions are also presented to demonstrate the well-balanced property,high order accuracy and good shock capturing capability of the proposed scheme.展开更多
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
基金Project supported by the National Key Project(No.GJXM92579)the Defense Industrial Technology Development Program(No.C1520110002)the State Administration of Science,Technology and Industry for National Defence,China。
文摘To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.
文摘In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.
基金Foundation items: National Basic Research Program of China (2009CB723801) National Natural Science Foundation of China (11072259)
文摘The Spalart-Allmaras (S-A) turbulence model, the shear-stress transport (SST) turbulence model and their compressibility corrections are revaluated for hypersonic compression comer flows by using high-order difference schemes. The compressibility effect of density gradient, pressure dilatation and turbulent Mach number is accounted. In order to reduce confusions between model uncertainties and discretization errors, the formally fifth-order explicit weighted compact nonlinear scheme (WCNS-E-5) is adopted for convection terms, and a fourth-order staggered central difference scheme is applied for viscous terms. The 15° and 34° compression comers at Mach number 9.22 are investigated. Numerical results show that the original SST model is superior to the original S-A model in the resolution of separated regions and predictions of wall pressures and wall heat-flux rates. The capability of the S-A model can be largely improved by blending Catris' and Shur's compressibility corrections. Among the three corrections of the SST model listed in the present paper, Catris' modification brings the best results. However, the dissipation and pressure dilatation corrections result in much larger separated regions than that of the experiment, and are much worse than the original SST model as well as the other two corrections. The correction of turbulent Mach number makes the separated region slightly smaller than that of the original SST model. Some results of low-order schemes are also presented. When compared to the results of the high-order schemes, the separated regions are smaller, and the peak wall pressures and peak heat-flux rates are lower in the region of the reattachment points.
文摘The nonlinear evolution problem in nonparallel boundary layer stability was studied. The relative parabolized stability equations of nonlinear nonparallel boundary layer were derived. The developed numerical method, which is very effective, was used to study the nonlinear evolution. of T-S disturbance wave at finite amplitudes. Solving nonlinear equations of different modes by using predictor-corrector and iterative approach, which is uncoupled between modes, improving computational accuracy by using high order compact differential scheme, satisfying normalization condition I determining tables of nonlinear terms at different modes, and implementing stably the spatial marching, were included in this method. With different initial amplitudes, the nonlinear evolution of T-S wave was studied. The nonlinear nonparallel results of examples compare with data of direct numerical simulations (DNS) using full Navier-Stokes equations.
基金This work was supported by the project of Basic Research on Frontier Problems in Fluid and Aerodynamics China and the National Natural Science Foundation of China (Grant No.19772072) .
文摘Based on the method deriving dissipative compact linear schemes ( DCS), novel high-order dissipative weighted compact nonlinear schemes (DWCNS) are developed. By Fourier analysis, the dissipative and dispersive features of DWCNS are discussed. In view of the modified wave number, the DWCNS are equivalent to the fifth-order upwind biased explicit schemes in smooth regions and the interpolations at cell-edges dominate the accuracy of DWCNS. Boundary and near boundary schemes are developed and the asymptotic stabilities of DWCNS on both uniform and stretching grids are analyzed. The multi-dimensional implementations for Euler and Navier-Stokes equations are discussed. Several numerical inviscid and viscous results are given which show the good performances of the DWCNS for discontinuities capturing, high accuracy for boundary layer resolutions, good convergent rates (the root-mean-square of residuals approaching machine zero for solutions with strong shocks) and especially the damping effect on the spurious oscillations which were found in the solutions obtained by TVD and ENO schemes.
文摘In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme.
基金supported in part by NSF of China No.10571059E-Institutes of Shanghai Municipal Education Commission No.E03004+4 种基金Shanghai Priority Academic Discipline,and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education MinistrySF of Shanghai No.04JC14062the fund of Chinese Education Ministry No.20040270002the Shanghai Leading Academic Discipline Project No.T0401the fund for E-Institutes of Shanghai Municipal Education Commission No.E03004 and the fund No.04DB15 of Shanghai Municipal Education Commission
文摘A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-diffusion equations. An accelerated monotone iterative method for the resulting discrete problem is presented. The sequence of iteration converges monotonically to the unique solution of the discrete problem, and the convergence rate is either quadratic or nearly quadratic, depending on the property of the nonlinear reaction. The numerical results illustrate the high accuracy of the proposed scheme and the rapid convergence rate of.the iteration.
基金Supported by the National Natural Science Foundation of China(Grants11172317,91016001)973 Program 2009CB724104,Supported by 973 program 2009CB723800+1 种基金Supported by AFOSR Grant FA9550-09-1-0126NSF grants DMS-0809086 and DMS-1112700
文摘The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied through numerical tests. Like most other shock capturing schemes, WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level. In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput. 31, 273–305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216–238], to improve the convergence to steady state solutions for WENO schemes, are generalized to the WCNS. Detailed numerical studies in one and two dimensional cases are performed. Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS. The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.
基金The work is supported by the Basic Research Foundation of the National NumericalWind Tunnel Project(Grant No.NNW2018-ZT4A08)the National Natural Science Foundation(Grant No.11972370)the National Key Project(Grant No.GJXM92579)of China.
文摘It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water equations in prebalanced forms.The scheme is proved to be well-balanced provided that the source term is treated appropriately as the advection term.Some numerical examples in oneand two-dimensions are also presented to demonstrate the well-balanced property,high order accuracy and good shock capturing capability of the proposed scheme.