A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then ...A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.展开更多
An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy ...An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network(NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.展开更多
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa...In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.展开更多
In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a n...In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a nonlinear system with matched and mismatched disturbances is considered. The conventional extended state observer (ESO) can only be applied to systems that are in the form of integral chains. Moreover, this method has limitations in the face of mismatched disturbances. In the presence of time-varying disturbances, the traditional ESOs cannot estimate the disturbances accurately. To overcome this limitation, an EANESO is proposed in this paper. The main idea is to design the nonlinear ESO (NESO) to estimate the states of the system and multiple disturbances simultaneously. The observer gains are considered time-varying and adjusted with adaptation laws to improve the estimation accuracy and overcome the peaking phenomenon. Next, the proposed controller is designed based on output feedback to eliminate the effects of multiple disturbances and stabilize the closed-loop system. Subsequently, the stability analysis of the closed-loop system and convergence of the observer error are discussed. Finally, the proposed method is applied to the inverted pendulum system. The simulated results show good performance of the proposed method as compared with a recently published scheme in the related literature.展开更多
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin...The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.展开更多
The purpose of this research is to improve the robustness of the autonomous system in order to improve the position and velocity estimation of an Unmanned Aerial Vehicle(UAV).Therefore, new integrated SINS/GPS navigat...The purpose of this research is to improve the robustness of the autonomous system in order to improve the position and velocity estimation of an Unmanned Aerial Vehicle(UAV).Therefore, new integrated SINS/GPS navigation scheme based on Interacting Multiple Nonlinear Fuzzy Adaptive H_∞ Models(IMM-NFAH_∞) filtering technique for UAV is presented. The proposed IMM-NFAH_∞ strategy switches between two different Nonlinear Fuzzy Adaptive H_∞(NFAH_∞) filters and each NFAH_∞ filter is based on different fuzzy logic inference systems. The newly proposed technique takes into consideration the high order Taylor series terms and adapts the nonlinear H_∞ filter based on different fuzzy inference systems via adaptive filter bounds(di),along with disturbance attenuation parameter c. Simulation analysis validates the performance of the proposed algorithm, and the comparison with nonlinear H_∞(NH_∞) filter and that with different NFAH_∞ filters demonstrate the effectiveness of UAV localization utilizing IMM-NFAH_∞ filter.展开更多
This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compe...This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.展开更多
The developing populace and industrialization power demand prompted the requirement for power generation from elective sources.The desire for this pursuit is solid due to the ever-present common assets of petroleum de...The developing populace and industrialization power demand prompted the requirement for power generation from elective sources.The desire for this pursuit is solid due to the ever-present common assets of petroleum deri-vatives and their predominant ecological issues.It is generally acknowledged that sustainable power sources are one of the best answers for the energy emergency.Among these,Photovoltaic(PV)sources have many benefits to bestow a very promising future.If integrated into the existing power distribution infrastructure,the solar source will be more successful,requiring efficient Direct Current(DC)-Alternating Current(AC)conversion.This paper mainly aims to improve control-lers’performance between AC/DC Energy sources and the DC loads using the Adaptive Nonlinear Sliding Mode(ANSM)control method.The proposed ANSM method efficiently controls power quality issues,such as transient response,powerflow reliability and Total Harmonics Distortion(THD).The proposed con-troller is applied for both AC/DC and DC/DC converters and the performance of the proposed controller is validated through simulation checking the above para-meters.The simulation results confirm ANSM configuration is more reliable and efficient than the existing fuzzy and sliding mode control methods.展开更多
There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two gr...There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two groups: the constant and the time-varying. The controller identifies constant uncertain parameters using nonlinear adaptive controller associated with elimination of the influences of time-varying uncertain parameters and compensation of the external disturbance using sliding control. The results of numerical simulation attest to the capability of this control scheme not only to, with deadly accuracy, identify parameters of motion platform such as load, inertia moments and mass center, but also effectively improve the robustness of the system.展开更多
To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows th...To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.展开更多
Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. T...Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.展开更多
The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cub...The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.展开更多
In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint me...In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail.展开更多
This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-a...This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-adaptive nonlinear control. With regard to detailed attitude control system design, two schemes are shown for different application cases.展开更多
In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated...In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.展开更多
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no...With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.展开更多
Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predomin...Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.展开更多
Adaptive control of discrete-time parametric-strict-feedback nonlinear systems will be studied in this paper. To the best knowledge of the authors, almost all of the existing results for such systems need Lipschitz co...Adaptive control of discrete-time parametric-strict-feedback nonlinear systems will be studied in this paper. To the best knowledge of the authors, almost all of the existing results for such systems need Lipschitz condition. The main purpose of this paper is to take a step towards nonlinear growth rate for second-order systems. The control law is designed based on least squares (LS) algorithms and on recursive adaptive predictors. Global stability and tracking performance are established for the closed-loop systems.展开更多
The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a...The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a challenging and difficult task. Quite often, models are too inaccurate, especially in transient stages. In model based fault detection, these inaccuracies might cause wrong actions. An effective approach, which combines nonlinear unknown input observer(NUIO) with an adaptive threshold, is proposed. NUIO can estimate the states of RSS asymptotically without any knowledge of external disturbance. An adaptive threshold is used for decision making which helps to reduce the influence of model uncertainty. Actuator and sensor faults that occur in RSS are considered both by simulation and experimental tests. The observer performance, robustness and fault detection capability are verified. Simulation and experimental results show that the proposed fault detection scheme is efficient and can be used for on-line fault detection.展开更多
文摘A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.
基金Supported by the National Natural Science Foundation of China(61333010,21376077,61203157)the Natural Science Foundation of Shanghai(14ZR1421800)State Key Laboratory of Synthetical Automation for Process Industries(PAL-N201404)
文摘An improved nonlinear adaptive switching control method is presented to relax the assumption on the higher order nonlinear terms of a class of discrete-time non-affine nonlinear systems. The proposed control strategy is composed of a linear adaptive controller, a neural network(NN) based nonlinear adaptive controller and a switching mechanism. An incremental model is derived to represent the considered system and an improved robust adaptive law is chosen to update the parameters of the linear adaptive controller. A new performance criterion of the switching mechanism is designed to select the proper controller. Using this control scheme, all the signals in the system are proved to be bounded. Numerical examples verify the effectiveness of the proposed algorithm.
基金supported by the Zhejiang Provincial Natural Science Foundation(LY24F030011,LY23F030005)the National Natural Science Foundation of China(62373131).
文摘In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.
文摘In this paper, an enhanced adaptive nonlinear extended state observer (EANESO) for single-input single-output pure feedback systems in the presence of external time-varying disturbances is proposed. In this paper, a nonlinear system with matched and mismatched disturbances is considered. The conventional extended state observer (ESO) can only be applied to systems that are in the form of integral chains. Moreover, this method has limitations in the face of mismatched disturbances. In the presence of time-varying disturbances, the traditional ESOs cannot estimate the disturbances accurately. To overcome this limitation, an EANESO is proposed in this paper. The main idea is to design the nonlinear ESO (NESO) to estimate the states of the system and multiple disturbances simultaneously. The observer gains are considered time-varying and adjusted with adaptation laws to improve the estimation accuracy and overcome the peaking phenomenon. Next, the proposed controller is designed based on output feedback to eliminate the effects of multiple disturbances and stabilize the closed-loop system. Subsequently, the stability analysis of the closed-loop system and convergence of the observer error are discussed. Finally, the proposed method is applied to the inverted pendulum system. The simulated results show good performance of the proposed method as compared with a recently published scheme in the related literature.
文摘The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.
基金supported by a grant from the National Natural Science Foundation of China(No.61375082)
文摘The purpose of this research is to improve the robustness of the autonomous system in order to improve the position and velocity estimation of an Unmanned Aerial Vehicle(UAV).Therefore, new integrated SINS/GPS navigation scheme based on Interacting Multiple Nonlinear Fuzzy Adaptive H_∞ Models(IMM-NFAH_∞) filtering technique for UAV is presented. The proposed IMM-NFAH_∞ strategy switches between two different Nonlinear Fuzzy Adaptive H_∞(NFAH_∞) filters and each NFAH_∞ filter is based on different fuzzy logic inference systems. The newly proposed technique takes into consideration the high order Taylor series terms and adapts the nonlinear H_∞ filter based on different fuzzy inference systems via adaptive filter bounds(di),along with disturbance attenuation parameter c. Simulation analysis validates the performance of the proposed algorithm, and the comparison with nonlinear H_∞(NH_∞) filter and that with different NFAH_∞ filters demonstrate the effectiveness of UAV localization utilizing IMM-NFAH_∞ filter.
基金supported by Esfahan Regional Electric Company(EREC)
文摘This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.
文摘The developing populace and industrialization power demand prompted the requirement for power generation from elective sources.The desire for this pursuit is solid due to the ever-present common assets of petroleum deri-vatives and their predominant ecological issues.It is generally acknowledged that sustainable power sources are one of the best answers for the energy emergency.Among these,Photovoltaic(PV)sources have many benefits to bestow a very promising future.If integrated into the existing power distribution infrastructure,the solar source will be more successful,requiring efficient Direct Current(DC)-Alternating Current(AC)conversion.This paper mainly aims to improve control-lers’performance between AC/DC Energy sources and the DC loads using the Adaptive Nonlinear Sliding Mode(ANSM)control method.The proposed ANSM method efficiently controls power quality issues,such as transient response,powerflow reliability and Total Harmonics Distortion(THD).The proposed con-troller is applied for both AC/DC and DC/DC converters and the performance of the proposed controller is validated through simulation checking the above para-meters.The simulation results confirm ANSM configuration is more reliable and efficient than the existing fuzzy and sliding mode control methods.
文摘There is proposed an adaptive sliding controller in task space on the base of the linear Newton-Euler dynamic equation of motion platform in a six-DOF flight simulator. The uncertain parameters are divided into two groups: the constant and the time-varying. The controller identifies constant uncertain parameters using nonlinear adaptive controller associated with elimination of the influences of time-varying uncertain parameters and compensation of the external disturbance using sliding control. The results of numerical simulation attest to the capability of this control scheme not only to, with deadly accuracy, identify parameters of motion platform such as load, inertia moments and mass center, but also effectively improve the robustness of the system.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘To explore the precise dynamic response of the levitation system with active controller, a maglev guide way-electromagnet-air spring-cabin coupled model is derived firstly. Based on the mathematical model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, load uncertainties and external disturbances are the main issues that should be solved in engineering. Under the assumptions that the loads and external disturbance are measurable, the backstepping module controller developed in this work can tackle the above problems effectively. In reality, the load is uncertain due to the additions of luggage and passengers, which will degrade the dynamic performance. A load estimation algorithm is introduced to track the actual load asymptotically and eliminate its influence by tuning the parameters of controller online. Furthermore,considering the external disturbances generated by crosswind, pulling motor and air springs, the extended state observer is employed to estimate and suppress the external disturbance. Finally, results of numerical simulations illustrating closed-loop performance are provided.
基金supported by the National Natural Science Foundation of China(Grant No.51507134)the Science Fund from the Education Department of Shaanxi Province,China(Grant No.15JK1537)
文摘Ferroresonance is a complex nonlinear electrotechnical phenomenon, which can result in thermal and electrical stresses on the electric power system equipments due to the over voltages and over currents it generates. The prediction or determination of ferroresonance depends mainly on the accuracy of the model used. Fractional-order models are more accurate than the integer-order models. In this paper, a fractional-order ferroresonance model is proposed. The influence of the order on the dynamic behaviors of this fractional-order system under different parameters n and F is investigated. Compared with the integral-order ferroresonance system, small change of the order not only affects the dynamic behavior of the system, but also significantly affects the harmonic components of the system. Then the fractional-order ferroresonance system is implemented by nonlinear circuit emulator. Finally, a fractional-order adaptive sliding mode control (FASMC) method is used to eliminate the abnormal operation state of power system. Since the introduction of the fractional-order sliding mode surface and the adaptive factor, the robustness and disturbance rejection of the controlled system are en- hanced. Numerical simulation results demonstrate that the proposed FASMC controller works well for suppression of ferroresonance over voltage.
基金supported by the National Natural Science Foundation of China(No. 61032001)Shandong Provincial Natural Science Foundation of China (No. ZR2012FQ004)
文摘The paper deals with state estimation problem of nonlinear non-Gaussian discrete dynamic systems for improvement of accuracy and consistency. An efficient new algorithm called the adaptive Gaussian-sum square-root cubature Kalman filter(AGSSCKF) with a split-merge scheme is proposed. It is developed based on the squared-root extension of newly introduced cubature Kalman filter(SCKF) and is built within a Gaussian-sum framework. Based on the condition that the probability density functions of process noises and initial state are denoted by a Gaussian sum using optimization method, a bank of SCKF are used as the sub-filters to estimate state of system with the corresponding weights respectively, which is adaptively updated. The new algorithm consists of an adaptive splitting and merging procedure according to a proposed split-decision model based on the nonlinearity degree of measurement. The results of two simulation scenarios(one-dimensional state estimation and bearings-only tracking) show that the proposed filter demonstrates comparable performance to the particle filter with significantly reduced computational cost.
基金Application investigation of conditional nonlinear optimal perturbation in typhoon adaptive observation (40830955)
文摘In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail.
基金This research is supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No.16101005).
文摘This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-adaptive nonlinear control. With regard to detailed attitude control system design, two schemes are shown for different application cases.
文摘In this paper,an integrated estimation guidance and control(IEGC)system is designed based on the command filtered backstepping approach for circular field-of-view(FOV)strapdown missiles.The threedimensional integrated estimation guidance and control nonlinear model with limited actuator deflection angle is established considering the seeker's FOV constraint.The boundary time-varying integral barrier Lyapunov function(IBLF)is employed in backstepping design to constrain the body line-of-sight(BLOS)in IEGC system to fit a circular FOV.Then,the nonlinear adaptive controller is designed to estimate the changing aerodynamic parameters.The generalized extended state observer(GESO)is designed to estimate the acceleration of the maneuvering targets and the unmatched time-varying disturbances for improving tracking accuracy.Furthermore,the command filters are used to solve the"differential expansion"problem during the backstepping design.The Lyapunov theory is used to prove the stability of the overall closed-loop IEGC system.Finally,the simulation results validate the integrated system's effectiveness,achieving high accuracy strikes against maneuvering targets.
基金supported by the National Natural Science Foundation of China(6100115361271415+4 种基金6140149961531015)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)
文摘With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.
文摘Traditional biomechanical analyses of human movement are generally derived from linear mathematics.While these methods can be useful in many situations,they do not describe behaviors in human systems that are predominately nonlinear.For this reason,nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature.These analysis techniques have provided new insights into how systems(1) maintain pattern stability,(2) transition into new states,and(3) are governed by short-and long-term(fractal) correlational processes at different spatio-temporal scales.These different aspects of system dynamics are typically investigated using concepts related to variability,stability,complexity,and adaptability.The purpose of this paper is to compare and contrast these different concepts and demonstrate that,although related,these terms represent fundamentally different aspects of system dynamics.In particular,we argue that variability should not uniformly be equated with stability or complexity of movement.In addition,current dynamic stability measures based on nonlinear analysis methods(such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics,but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored.Finally,systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.
基金the National Natural Science Foundation of China (Grant Nos. 60204010 and 60474499)the Aviation Foundation of China(Grant No. 00E51083)
文摘Adaptive control of discrete-time parametric-strict-feedback nonlinear systems will be studied in this paper. To the best knowledge of the authors, almost all of the existing results for such systems need Lipschitz condition. The main purpose of this paper is to take a step towards nonlinear growth rate for second-order systems. The control law is designed based on least squares (LS) algorithms and on recursive adaptive predictors. Global stability and tracking performance are established for the closed-loop systems.
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(51175453)supported by the National Natural Science Foundation of China
文摘The inherent nonlinearities of the rudder servo system(RSS) and the unknown external disturbances bring great challenges to the practical application of fault detection technology. Modeling of whole rudder system is a challenging and difficult task. Quite often, models are too inaccurate, especially in transient stages. In model based fault detection, these inaccuracies might cause wrong actions. An effective approach, which combines nonlinear unknown input observer(NUIO) with an adaptive threshold, is proposed. NUIO can estimate the states of RSS asymptotically without any knowledge of external disturbance. An adaptive threshold is used for decision making which helps to reduce the influence of model uncertainty. Actuator and sensor faults that occur in RSS are considered both by simulation and experimental tests. The observer performance, robustness and fault detection capability are verified. Simulation and experimental results show that the proposed fault detection scheme is efficient and can be used for on-line fault detection.