期刊文献+
共找到9,944篇文章
< 1 2 250 >
每页显示 20 50 100
Normalized Solutions of Nonlinear Choquard Equations with Nonconstant Potential
1
作者 LI Nan XU Liping 《应用数学》 北大核心 2025年第1期14-29,共16页
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ... In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods. 展开更多
关键词 nonlinear Choquard equation Potential function Variational method Normalized solution
在线阅读 下载PDF
Investigating Solutions in Nonlinear Evolution Equations:A Focus on Local Existence in Mixed Types
2
作者 NAFFISA Toureche Trouba FAN Long ABDELGHANI Dahou 《应用数学》 北大核心 2025年第3期691-702,共12页
With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixe... With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields. 展开更多
关键词 nonlinear evolution equation Contraction mapping principle Sobolev space Dissipative system
在线阅读 下载PDF
Chirped solutions and dynamical properties of the resonant Schr?dinger equation with quadratic-cubic nonlinearity
3
作者 TANG Jia-xuan 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第1期223-237,共15页
In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensa... In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems. 展开更多
关键词 chirped solutions bifurcation theory trial equation method quadratic-cubic nonlinearity non-linear waves
在线阅读 下载PDF
Peaked traveling wave solutions of the modified highly nonlinear Novikov equation
4
作者 LI Hui-jun WEN Zhen-shu LI Shao-yong 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第2期375-394,共20页
In this paper,we focus on peaked traveling wave solutions of the modified highly nonlinear Novikov equation by dynamical systems approach.We obtain a traveling wave system which is a singular planar dynamical system w... In this paper,we focus on peaked traveling wave solutions of the modified highly nonlinear Novikov equation by dynamical systems approach.We obtain a traveling wave system which is a singular planar dynamical system with three singular straight lines,and derive all possible phase portraits under corresponding parameter conditions.Then we show the existence and dynamics of two types of peaked traveling wave solutions including peakons and periodic cusp wave solutions.The exact explicit expressions of two peakons are given.Besides,we also derive smooth solitary wave solutions,periodic wave solutions,compacton solutions,and kink-like(antikink-like)solutions.Numerical simulations are further performed to verify the correctness of the results.Most importantly,peakons and periodic cusp wave solutions are newly found for the equation,which extends the previous results. 展开更多
关键词 modified highly nonlinear Novikov equation bifurcation dynamics peakons periodic cusp wave solutions
在线阅读 下载PDF
Symmetry of traveling wave solutions for a Camassa–Holm type equation with higher-order nonlinearity
5
作者 Wenguang Cheng Ji Lin 《Communications in Theoretical Physics》 2025年第7期14-18,共5页
We are concerned with a Camassa-Holm type equation with higher-order nonlinearity including some integrable peakon models such as the Camassa-Holm equation,the Degasperis-Procesi equation,and the Novikov equation.We s... We are concerned with a Camassa-Holm type equation with higher-order nonlinearity including some integrable peakon models such as the Camassa-Holm equation,the Degasperis-Procesi equation,and the Novikov equation.We show that all the horizontal symmetric waves for this equation must be traveling waves.This extends the previous results for the Camassa-Holm and Novikov equations. 展开更多
关键词 Camassa-Holm type equation with higher-order nonlinearity traveling waves weak solutions
原文传递
Some regularity properties of scattering data for the derivative nonlinear Schrödinger equation
6
作者 Weifang Weng Zhenya Yan 《Communications in Theoretical Physics》 2025年第5期1-20,共20页
In this paper,we present some properties of scattering data for the derivative nonlinear Schrödinger equation in H^(S)(R)(s≥1/2)starting from the Lax pair.We show that the reciprocal of the transmission coeffici... In this paper,we present some properties of scattering data for the derivative nonlinear Schrödinger equation in H^(S)(R)(s≥1/2)starting from the Lax pair.We show that the reciprocal of the transmission coefficient can be expressed as the sum of some iterative integrals,and its logarithm can be written as the sum of some connected iterative integrals.We provide the asymptotic properties of the first few iterative integrals of the reciprocal of the transmission coefficient.Moreover,we provide some regularity properties of the reciprocal of the transmission coefficient related to scattering data in H^(S)(R). 展开更多
关键词 derivative nonlinear Schrödinger equation modified Zakharov-Shabat spectral problem scattering data inverse scattering transform ASYMPTOTICS
原文传递
A symmetric difference data enhancement physics-informed neural network for the solving of discrete nonlinear lattice equations
7
作者 Jian-Chen Zhou Xiao-Yong Wen Ming-Juan Guo 《Communications in Theoretical Physics》 2025年第6期21-29,共9页
In this paper,we propose a symmetric difference data enhancement physics-informed neural network(SDE-PINN)to study soliton solutions for discrete nonlinear lattice equations(NLEs).By considering known and unknown symm... In this paper,we propose a symmetric difference data enhancement physics-informed neural network(SDE-PINN)to study soliton solutions for discrete nonlinear lattice equations(NLEs).By considering known and unknown symmetric points,numerical simulations are conducted to one-soliton and two-soliton solutions of a discrete KdV equation,as well as a one-soliton solution of a discrete Toda lattice equation.Compared with the existing discrete deep learning approach,the numerical results reveal that within the specified spatiotemporal domain,the prediction accuracy by SDE-PINN is excellent regardless of the interior or extrapolation prediction,with a significant reduction in training time.The proposed data enhancement technique and symmetric structure development provides a new perspective for the deep learning approach to solve discrete NLEs.The newly proposed SDE-PINN can also be applied to solve continuous nonlinear equations and other discrete NLEs numerically. 展开更多
关键词 symmetric difference data enhancement physics-informed neural network data enhancement symmetric point soliton solutions discrete nonlinear lattice equations
原文传递
Dynamical analysis and localized waves of the n-component nonlinear Schrödinger equation with higher-order effects
8
作者 Yu Lou Guoan Xu 《Chinese Physics B》 2025年第3期204-213,共10页
Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generali... Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail. 展开更多
关键词 n-component nonlinear Schrödinger equation with higher-order effects generalized Darboux transformation localized waves soliton BREATHER rogue wave
原文传递
Cauchy matrix approach to three non-isospectral nonlinear Schrödinger equations 被引量:1
9
作者 Alemu Yilma Tefera Shangshuai Li Da-jun Zhang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第5期1-15,共15页
This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Ca... This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Cauchy matrix to provideτfunctions for the investigated equations.In this paper,using the Cauchy matrix approach,we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions.These equations are generically related to the time-dependent spectral parameter in the Zakharov–Shabat–Ablowitz–Kaup–Newell–Segur spectral problem.Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction.These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons. 展开更多
关键词 Cauchy matrix approach Sylvester equation nonlinear Schrödinger equation non-isospectral integrable system explicit solution
原文传递
A Comparative Study of Adomian Decomposition Method with Variational Iteration Method for Solving Linear and Nonlinear Differential Equations 被引量:2
10
作者 Sarah Khaled Al Baghdadi N. Ameer Ahammad 《Journal of Applied Mathematics and Physics》 2024年第8期2789-2819,共31页
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna... This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering. 展开更多
关键词 Differential equations Numerical Analysis Mathematical Computing Engineering Models nonlinear Dynamics
在线阅读 下载PDF
JERISON-LEE IDENTITIES AND SEMI-LINEAR SUBELLIPTIC EQUATIONS ON HEISENBERG GROUP
11
作者 Xinan MA Qianzhong OU Tian WU 《Acta Mathematica Scientia》 2025年第1期264-279,共16页
In the study of the extremal for Sobolev inequality on the Heisenberg group and the Cauchy-Riemann(CR)Yamabe problem,Jerison-Lee found a three-dimensional family of differential identities for critical exponent subell... In the study of the extremal for Sobolev inequality on the Heisenberg group and the Cauchy-Riemann(CR)Yamabe problem,Jerison-Lee found a three-dimensional family of differential identities for critical exponent subelliptic equation on Heisenberg groupℍn by using the computer in[5].They wanted to know whether there is a theoretical framework that would predict the existence and the structure of such formulae.With the help of dimension conservation and invariant tensors,we can answer the above question. 展开更多
关键词 cauchy-riemann Yamabe problem subelliptic equations Jerison-Lee identities
在线阅读 下载PDF
CLASSIFICATION OF SELF-SIMILAR SOLUTIONS OF THE DEGENERATE POLYTROPIC FILTRATION EQUATIONS
12
作者 Zhipeng LIU Shanming JI 《Acta Mathematica Scientia》 2025年第2期615-635,共21页
In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with ... In this paper,we study the self-similar solutions of the degenerate diffusion equation ut-div(|▽u^(m)|^(p-2)▽u^(m))=0 of polytropic filtration diffusion in R^(N)×(0,±∞)or(R^(N)/{0})×(0,±∞)with N≥1,m>0,p>1,such that m(p-1)>1.We give a clear classification of the self-similar solutions of the form u(x,t)=(βt)^(-α/β)((βt)^(-1/β)|x|)withα∈R andβ=α[m(p-1)-1]+p,regular or singular at the origin point.The existence and uniqueness of some solutions are established by the phase plane analysis method,and the asymptotic properties of the solutions near the origin and the infinity are also described.This paper extends the classical results of self-similar solutions for degeneratep-Laplace heat equation by Bidaut-Véron[Proc Royal Soc Edinburgh,2009,139:1-43]to the doubly nonlinear degenerate diffusion equations. 展开更多
关键词 self-similar solutions polytropic filtration equation degenerate diffusion equation doubly nonlinear diffusion
在线阅读 下载PDF
Solving the BBMB Equation in Shallow Water Waves via Space-Time MQ-RBF Collocation
13
作者 Hongwei Ma Yingqian Tian +2 位作者 Fuzhang Wang Quanfu Lou Lijuan Yu 《Computer Modeling in Engineering & Sciences》 2025年第9期3419-3432,共14页
This study introduces a novel single-layer meshless method,the space-time collocation method based on multiquadric-radial basis functions(MQ-RBF),for solving the Benjamin-Bona-Mahony-Burgers(BBMB)equation.By reconstru... This study introduces a novel single-layer meshless method,the space-time collocation method based on multiquadric-radial basis functions(MQ-RBF),for solving the Benjamin-Bona-Mahony-Burgers(BBMB)equation.By reconstructing the time variable as a space variable,this method establishes a combined space-time structure that can eliminate the two-step computational process required in traditional grid methods.By introducing shape parameteroptimized MQ-RBF,high-precision discretization of the nonlinear,dispersive,and dissipative terms in the BBMB equation is achieved.The numerical experiment section validates the effectiveness of the proposed method through three benchmark examples.This method shows significant advantages in computational efficiency,providing a new numerical tool for engineering applications in fields such as shallow water wave dynamics. 展开更多
关键词 Numerical method BBMB equation meshless method radial basis function nonlinear partial differential equation
在线阅读 下载PDF
Blow-Up Solutions in a Parabolic Equation with Variable Coefficients and Memory Boundary Flux
14
作者 ZHANG An-lei LIU Bing-chen 《Chinese Quarterly Journal of Mathematics》 2025年第1期74-81,共8页
This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the beh... This paper deals with a semilinear parabolic problem involving variable coefficients and nonlinear memory boundary conditions.We give the blow-up criteria for all nonnegative nontrivial solutions,which rely on the behavior of the coefficients when time variable tends to positive infinity.Moreover,the global existence of solutions are discussed for non-positive exponents. 展开更多
关键词 Semilinear parabolic equation nonlinear memory boundary flux Variable coefficient BLOW-UP
在线阅读 下载PDF
ASYMPTOTIC BEHAVIOR NEAR THE BOUNDARY OF A LARGE SOLUTION TO SEMILINEAR POISSON EQUATION WITH DOUBLE-POWER NONLINEARITY
15
作者 Kazuhiro TAKIMOTO Yuxiao ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2083-2098,共16页
We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavio... We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavior of a solution u near the boundary OD up to the third or higher term. 展开更多
关键词 large solution semilinear Poisson equation double-power nonlinearity ASYMPTOTICBEHAVIOR
在线阅读 下载PDF
The Method of Polynomial Particular Solutions for Solving Nonlinear Poisson-Type Equations
16
作者 Zhile Jia Yanhua Cao Xiaoran Wu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期155-165,共11页
In this paper,the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one,two,and three dimensions.The condition number of the coefficient matrix is redu... In this paper,the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one,two,and three dimensions.The condition number of the coefficient matrix is reduced through the implementation of multiple scale technique,ultimately yielding a stable numerical solution.The methodological process can be divided into two main parts:first,identifying the corresponding polynomial particular solutions for the linear differential operator terms in the governing equations,and second,employing these polynomial particular solutions as basis function to iteratively solve the remaining nonlinear terms within the governing equations.Additionally,we investigate the potential improvement in numerical accuracy for equations with singularities in the analytical solution by shifting the computational domain a certain distance.Numerical experiments are conducted to assess both the accuracy and stability of the proposed method.A comparison of the obtained results with those produced by other numerical methods demonstrates the accuracy,stability,and efficiency of the proposed method in handling nonlinear Poisson-type partial differential equations. 展开更多
关键词 nonlinear equation SINGULARITY Polynomial particular solutions Poisson type
原文传递
THE EXACT MEROMORPHIC SOLUTIONS OF SOME NONLINEAR DIFFERENTIAL EQUATIONS
17
作者 刘慧芳 毛志强 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期103-114,共12页
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co... We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions. 展开更多
关键词 Nevanlinna theory nonlinear differential equations meromorphic functions entire functions
在线阅读 下载PDF
Stability analysis and soliton solutions of the(1+1)-dimensional nonlinear chiral Schrodinger equation in nuclear physics
18
作者 Fazal Badshah Kalim U Tariq +2 位作者 Ahmet Bekir S M Raza Kazmi Emad Az-Zo'bi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第9期1-15,共15页
The nonlinear Schrodinger equation equation is one of the most important physical models used in optical fiber theory to explain the transmission of an optical soliton.The field of chiral soliton propagation in nuclea... The nonlinear Schrodinger equation equation is one of the most important physical models used in optical fiber theory to explain the transmission of an optical soliton.The field of chiral soliton propagation in nuclear physics is very interesting because of its numerous applications in communications and ultra-fast signal routing systems.The(1+1)-dimensional chiral dynamical structure that describes the soliton behaviour in data transmission is dealt with in this work using a variety of in-depth analytical techniques.This work has applications in particle physics,ionised science,nuclear physics,optics,and other applied mathematical sciences.We are able to develop a variety of solutions to demonstrate the behaviour of solitary wave structures,periodic soliton solutions,chiral soliton solutions,and bell-shaped soliton solutions with the use of applied techniques.Moreover,in order to verify the scientific calculations,the stability analysis for the observed solutions of the governing model is taken into consideration.In addition,the3-dimensional,contour,and 2-dimensional visuals are supplied for a better understanding of the behaviour of the solutions.The employed strategies are dependable,uncomplicated,and effective;yet have not been utilised with the governing model in the literature that is now accessible.The resulting outcomes have impressive applications across a large number of study areas and computational physics phenomena representing real-world scenarios.The methods applied in this model are not utilized on the given models in previous literature so we can say that these describe the novelty of the work. 展开更多
关键词 SOLITONS the nonlinear Schrodinger equation stability analysis chiral solitons exact solutions
原文传递
On examining the predictive capabilities of two variants of the PINN in validating localized wave solutions in the generalized nonlinear Schr?dinger equation
19
作者 K Thulasidharan N Sinthuja +1 位作者 N Vishnu Priya M Senthilvelan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第11期161-174,共14页
We introduce a novel neural network structure called strongly constrained theory-guided neural network(SCTgNN),to investigate the behaviour of the localized solutions of the generalized nonlinear Schr?dinger(NLS)equat... We introduce a novel neural network structure called strongly constrained theory-guided neural network(SCTgNN),to investigate the behaviour of the localized solutions of the generalized nonlinear Schr?dinger(NLS)equation.This equation comprises four physically significant nonlinear evolution equations,namely,the NLS,Hirota,Lakshmanan-Porsezian-Daniel and fifth-order NLS equations.The generalized NLS equation demonstrates nonlinear effects up to quintic order,indicating rich and complex dynamics in various fields of physics.By combining concepts from the physics-informed neural network and theory-guided neural network(TgNN)models,the SCTgNN aims to enhance our understanding of complex phenomena,particularly within nonlinear systems that defy conventional patterns.To begin,we employ the TgNN method to predict the behaviour of localized waves,including solitons,rogue waves and breathers,within the generalized NLS equation.We then use the SCTgNN to predict the aforementioned localized solutions and calculate the mean square errors in both the SCTgNN and TgNN in predicting these three localized solutions.Our findings reveal that both models excel in understanding complex behaviour and provide predictions across a wide variety of situations. 展开更多
关键词 generalized nonlinear Schr?dinger equation SOLITON rogue waves BREATHERS SCTgNN TgNN
原文传递
Rogue wave solutions and rogue-breather solutions to the focusing nonlinear Schr?dinger equation
20
作者 Si-Jia Chen Xing Lü 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第3期33-41,共9页
Based on the long wave limit method,the general form of the second-order and third-order rogue wave solutions to the focusing nonlinear Schr?dinger equation are given by introducing some arbitrary parameters.The inter... Based on the long wave limit method,the general form of the second-order and third-order rogue wave solutions to the focusing nonlinear Schr?dinger equation are given by introducing some arbitrary parameters.The interaction solutions between the first-order rogue wave and one-breather wave are constructed by taking a long wave limit on the two-breather solutions.By applying the same method to the three-breather solutions,two types of interaction solutions are obtained,namely the first-order rogue wave and two breather waves,the second-order rogue wave and one-breather wave,respectively.The influence of the parameters related to the phase on the interaction phenomena is graphically demonstrated.Collisions occur among the rogue waves and breather waves.After the collisions,the shape of them remains unchanged.The abundant interaction phenomena in this paper will contribute to a better understanding of the propagation and control of nonlinear waves. 展开更多
关键词 nonlinear Schrodinger equation rogue wave solutions interaction solutions
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部