期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A GLOBAL LINEAR AND LOCAL QUADRATIC SINGLE-STEP NONINTERIOR CONTINUATION METHOD FOR MONOTONE SEMIDEFINITE COMPLEMENTARITY PROBLEMS 被引量:1
1
作者 张立平 《Acta Mathematica Scientia》 SCIE CSCD 2007年第2期243-253,共11页
A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper... A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions. 展开更多
关键词 Semidefinite complementarity problem noninterior continuation method global convergence local quadratic convergence
在线阅读 下载PDF
One-step quadratic convergence of noninterior continuation method for NCP 被引量:2
2
作者 XIU NaihuaDepartment of Mathematics , Northern Jiaotong University , Beijing 100044, China 《Chinese Science Bulletin》 SCIE EI CAS 1999年第20期1858-1862,共5页
A noninterior continuation method is presented, with only the certering step used at each iteration, for nonlinear complementarity problem. It is shown that the algorithm is globally linearly and locally quadratically... A noninterior continuation method is presented, with only the certering step used at each iteration, for nonlinear complementarity problem. It is shown that the algorithm is globally linearly and locally quadratically convergent under certain conditions. 展开更多
关键词 nonlinear complementarity PROBLEM noninterior CONTINUATION method ONE-STEP QUADRATIC convergence.
在线阅读 下载PDF
半定规划的非内点连续化方法(英文)
3
作者 乌彩英 陈国庆 《应用数学》 CSCD 北大核心 2009年第2期381-390,共10页
基于Fischer-Burmeister函数,本文将半定规划(SDP)的中心路径条件转化为非线性方程组,进而用SDCP的非内点连续化方法求解之.证明了牛顿方向的存在性,迭代点列的有界性.在适当的假设条件下,得到算法的全局收敛性及局部二次收敛率.数值结... 基于Fischer-Burmeister函数,本文将半定规划(SDP)的中心路径条件转化为非线性方程组,进而用SDCP的非内点连续化方法求解之.证明了牛顿方向的存在性,迭代点列的有界性.在适当的假设条件下,得到算法的全局收敛性及局部二次收敛率.数值结果表明算法的有效性. 展开更多
关键词 半定规划 Fischer—Burmeister函数 非内点连续化方法 全局收敛 二次收敛
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部