The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by phy...The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by physical attacks,EMP(electromagnetic pulse)events,or cyberattacks,such disruptions could cripple essential services like water supply,healthcare,communication,and transportation.Research indicates that an attack on just nine key substations could result in a coast-to-coast blackout lasting up to 18 months,leading to economic collapse,civil unrest,and a breakdown of public order.This paper explores the key vulnerabilities of the grid,the potential impacts of prolonged blackouts,and the role of AI(artificial intelligence)and ML(machine learning)in mitigating these threats.AI-driven cybersecurity measures,predictive maintenance,automated threat response,and EMP resilience strategies are discussed as essential solutions to bolster grid security.Policy recommendations emphasize the need for hardened infrastructure,enhanced cybersecurity,redundant power systems,and AI-based grid management to ensure national resilience.Without proactive measures,the nation remains exposed to a catastrophic power grid failure that could have dire consequences for society and the economy.展开更多
The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespre...The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future.展开更多
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext...Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.展开更多
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use...As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.展开更多
Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
This review explores the research activities surrounding the development and integration of smart electricity grids in Burkina Faso, a landlocked and arid territory in West Africa and one of the poorest countries in t...This review explores the research activities surrounding the development and integration of smart electricity grids in Burkina Faso, a landlocked and arid territory in West Africa and one of the poorest countries in the world with significant energy challenges. It examines the current state of energy infrastructure in Burkina Faso, focusing on the integration of renewable energy sources, particularly solar photovoltaics. It highlights the role of smart grid technologies in enabling the efficient integration of renewable energy, improving grid stability and facilitating rural electrification. Additionally, the review addresses key challenges such as inadequate infrastructure, regulatory gaps and financial constraints that hinder the deployment of smart grids in the country. By analysing existing research and ongoing projects, this paper provides a comprehensive overview of the opportunities and barriers to implementing a smart electricity grid in Burkina Faso and offers recommendations for future development and policy frameworks.展开更多
The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-...The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-OCESE,which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks.This is one of the methods suggested in this study,which aims to enhance the sizing,positioning,and operational characteristics of structured ESS under dynamic grid conditions.Particularly,the aim is to maximize efficiency.A multiobjective genetic algorithm,the GA-OCESE framework,considers all these factors simultaneously.Besides considering cost-efficiency,response time,and energy use,the system also considers all these elements simultaneously.This enables it to effectively react to load uncertainty and variations in inputs connected to renewable sources.Results of an experimental assessment conducted on a standardized grid simulation platform indicate that by increasing energy use efficiency by 17.6%and reducing peak-load effects by 22.3%,GA-OCESE outperforms previous heuristic-based methods.This was found by contrasting the outcomes of the assessment with those of the evaluation.The results of the assessment helped to reveal this.The proposed approach will provide utility operators and energy planners with a decision-making tool that is both scalable and adaptable.This technology is particularly well-suited for smart grids,microgrid systems,and power infrastructures that heavily rely on renewable energy.Every technical component has been carefully recorded to ensure accuracy,reproducibility,and relevance across all power systems engineering software uses.This was done to ensure the program’s relevance.展开更多
This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as ru...This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies.展开更多
The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model tr...The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model training and widespread real-time inference necessitates substantial electricity consumption,presenting a significant challenge to conventional power infrastructure.This paper examines the critical need for a fundamental shift towards smart energy grids in response to AI’s growing energy footprint.It delves into the symbiotic relationship wherein AI acts as a significant energy consumer while offering the intelligence required for dynamic load management,efficient integration of renewable energy sources,and optimized grid operations.We posit that advanced smart grids are indispensable for facilitating AI’s sustainable growth,underscoring this synergy as a pivotal advancement toward a resilient energy future.展开更多
The extraction characteristics of multi-charged ions produced by ion sources are important for some useful applications.In this paper,the extraction process of Cu^(+),Cu^(2+),Cu^(3+),and Cu^(4+)mixed ions is simulated...The extraction characteristics of multi-charged ions produced by ion sources are important for some useful applications.In this paper,the extraction process of Cu^(+),Cu^(2+),Cu^(3+),and Cu^(4+)mixed ions is simulated by setting ideal physical parameters in a two-dimensional particle-in-cell(PIC)code,and the evolution characteristics of density and velocity distributions of different charged ions during plasma(density about 10^(15)m^(-3))motion and extraction are presented.Besides,the effects of grid thickness and grid aperture on the motion behavior of different charged ions and the extracted ion current are analyzed.The results showed that the ion diffusion increases with the increase of the ion charge,and higher charged ions are more likely to be affected by the grid.This provides support for further understanding of the extraction characteristics of multi-charged mixed ion beams.展开更多
This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects su...This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring,data expansion,control association,throughput,and losses.In addition,all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks.Moreover,the quantitative analysis of the optimization algorithm is discussed concerning two case studies,thereby achieving early convergence at reduced complexities.The suggested method ensures that each communication unit has its own distinct channels,maximizing the possibility of accurate measurements.This results in the provision of only the original data values,hence enhancing security.Both power and line values are individually observed to establish control in smart grid-connected channels,even in the presence of adaptive settings.A comparison analysis is conducted to showcase the results,using simulation studies involving four scenarios and two case studies.The proposed method exhibits reduced complexity,resulting in a throughput gain of over 90%.展开更多
Ensuring the reliability of power systems in microgrids is critical,particularly under contingency conditions that can disrupt power flow and system stability.This study investigates the application of Security-Constr...Ensuring the reliability of power systems in microgrids is critical,particularly under contingency conditions that can disrupt power flow and system stability.This study investigates the application of Security-Constrained Optimal Power Flow(SCOPF)using the Line Outage Distribution Factor(LODF)to enhance resilience in a renewable energy-integrated microgrid.The research examines a 30-bus system with 14 generators and an 8669 MW load demand,optimizing both single-objective and multi-objective scenarios.The single-objective opti-mization achieves a total generation cost of$47,738,while the multi-objective approach reduces costs to$47,614 and minimizes battery power output to 165.02 kW.Under contingency conditions,failures in transmission lines 1,22,and 35 lead to complete power loss in those lines,requiring a redistribution strategy.Implementing SCOPF mitigates these disruptions by adjusting power flows,ensuring no line exceeds its capacity.Specifically,in contingency 1,power in channel 4 is reduced from 59 to 32 kW,while overall load shedding is minimized to 0.278 MW.These results demonstrate the effectiveness of SCOPF in maintaining stability and reducing economic losses.Unlike prior studies,this work integrates LODF into SCOPF for large-scale microgrid applications,offering a computationally efficient contingency management framework that enhances grid resilience and supports renewable energy adoption.展开更多
Fibonacci sequence,generated by summing the preceding two terms,is a classical sequence renowned for its elegant properties.In this paper,leveraging properties of generalized Fibonacci sequences and formulas for conse...Fibonacci sequence,generated by summing the preceding two terms,is a classical sequence renowned for its elegant properties.In this paper,leveraging properties of generalized Fibonacci sequences and formulas for consecutive sums of equidistant sub-sequences,we investigate the ratio of the sum of numbers along main-diagonal and sub-diagonal of odd-order grids containing generalized Fibonacci sequences.We show that this ratio is solely dependent on the order of the grid,providing a concise and splendid identity.展开更多
In China,electric vehicle(EV)fast-charging power has quadrupled in the past five years,progressing toward 10-minute ultrafast charging.This rapid increase raises concerns about the impact on the power grid including i...In China,electric vehicle(EV)fast-charging power has quadrupled in the past five years,progressing toward 10-minute ultrafast charging.This rapid increase raises concerns about the impact on the power grid including increased peak power demand and the need for substantial upgrades to power infrastruc-ture.Here,we introduce an integrated model to assess fast and ultrafast charging impacts for represen-tative charging stations in China,combining real-world charging patterns and detailed station optimization models.We find that larger stations with 12 or more chargers experience modest peak power increases of less than 30%when fast-charging power is doubled,primarily because shorter charg-ing sessions are less likely to overlap.For more typical stations(e.g.,8-9 chargers and 120 kW·charger^(−1)),upgrading chargers to 350-550 kW while allowing managed dynamic waiting strategies(of∼1 minute)can reduce overall charging times to∼9 minutes.At stations,deploying battery storage and/or expanding transformers can help manage future increases in station loads,yet the primary device cost of the former is∼4 times higher than that of the latter.Our results offer insights for charging infrastructure planning,EV-grid interactions,and associated policymaking.展开更多
The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on e...The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.展开更多
To address the future application requirements of carbon-based material grids for ion thrusters characterized by high thrust,elevated specific impulse,and extended operational life,research was conducted using the LIP...To address the future application requirements of carbon-based material grids for ion thrusters characterized by high thrust,elevated specific impulse,and extended operational life,research was conducted using the LIPS-100 ion thruster developed by the Lanzhou Institute of Physics.This study focused on small-diameter configurations of carbon-carbon composite material grids.Successful development was achieved for both a 10 cm split carbon-carbon planar grid and an integrated carbon-carbon convex grid component.Performance variations among different configurations were investigated through extensive performance tests across the wide-range from 1 to 25 mN,as well as 200 h lifespan assessments under typical conditions at 20 mN.The results indicate that the two configurations of the carbon-carbon grid can achieve stable operation across the broad range of 1-20 mN,with beam current fluctuations ranging from 368 to 379 mA and accel grid current fluctuations between 1.58 and 1.81 mA.Furthermore,the key performance parameters of these grids were comparable to those of the traditional molybdenum grids.Under conditions of high thrust and power,the carbon-carbon grid demonstrated a significant reduction in the intercepted current at the accel grid.In comparison to the split carbon-carbon planar grid,the weight of the integrated carbon-carbon convex composite grid was reduced by 17.5%,the anode voltage decreased by approximately 2.4%-8.6%,and the cathode keeper voltage was reduced by approximately 3.5%-12.4%.It can be concluded that the integrated carbon-carbon convex grid offers distinct advantages in terms of hot-state structural stability,suppression of grid etching rates,and enhancement of thruster discharge efficiency.展开更多
The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distributio...The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distribution patterns and dynamics for botanists,ecologists,conservation biologists,and biogeographers.This study proposes a gridded vector data integration method,combining grid-based techniques with vectorization to integrate diverse data types from multiple sources into grids of the same scale.Here we demonstrate the methodology by creating a comprehensive 1°×1°database of western China that includes plant distribution information and environmental factor data.This approach addresses the need for a standardized data system to facilitate exploration of plant distribution patterns and dynamic changes in the region.展开更多
Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity...Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.展开更多
The phase-locked loop(PLL)plays an essential role for synchronizing renewable power generation to the grid.However,as per the grid-code compliance for reactive current support,the PLL output frequency fluctuates signi...The phase-locked loop(PLL)plays an essential role for synchronizing renewable power generation to the grid.However,as per the grid-code compliance for reactive current support,the PLL output frequency fluctuates significantly and exceeds the limitation,which seriously threaten the safe supply of electricity.In this paper,the underlying theoretical mechanism and dominant force behind the maximum PLL frequency deviation are revealed.Accordingly,two feasible approaches are proposed to enhance the PLL frequency stability with validations in experimental results.展开更多
文摘The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by physical attacks,EMP(electromagnetic pulse)events,or cyberattacks,such disruptions could cripple essential services like water supply,healthcare,communication,and transportation.Research indicates that an attack on just nine key substations could result in a coast-to-coast blackout lasting up to 18 months,leading to economic collapse,civil unrest,and a breakdown of public order.This paper explores the key vulnerabilities of the grid,the potential impacts of prolonged blackouts,and the role of AI(artificial intelligence)and ML(machine learning)in mitigating these threats.AI-driven cybersecurity measures,predictive maintenance,automated threat response,and EMP resilience strategies are discussed as essential solutions to bolster grid security.Policy recommendations emphasize the need for hardened infrastructure,enhanced cybersecurity,redundant power systems,and AI-based grid management to ensure national resilience.Without proactive measures,the nation remains exposed to a catastrophic power grid failure that could have dire consequences for society and the economy.
文摘The emergence of smart grids in India is propelled by an intricate interaction of market dynamics,regulatory structures,and stakeholder obligations.This study analyzes the primary factors that are driving the widespread use of smart grid technologies and outlines the specific roles and obligations of different stakeholders,such as government entities,utility companies,technology suppliers,and consumers.Government activities and regulations are crucial in facilitating the implementation of smart grid technology by offering financial incentives,regulatory assistance,and strategic guidance.Utility firms have the responsibility of implementing and integrating smart grid infrastructure,with an emphasis on improving the dependability of the grid,minimizing losses in transmission and distribution,and integrating renewable energy sources.Technology companies offer the essential hardware and software solutions,which stimulate creativity and enhance efficiency.Consumers actively engage in the energy ecosystem by participating in demand response,implementing energy saving measures,and adopting distributed energy resources like solar panels and electric vehicles.This study examines the difficulties and possibilities in India’s smart grid industry,highlighting the importance of cooperation among stakeholders to build a strong,effective,and environmentally friendly energy future.
基金the University of Transport Technology under grant number DTTD2022-12.
文摘Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design.
基金supported by the National Key R&D Program of China(No.2023YFB2703700)the National Natural Science Foundation of China(Nos.U21A20465,62302457,62402444,62172292)+4 种基金the Fundamental Research Funds of Zhejiang Sci-Tech University(Nos.23222092-Y,22222266-Y)the Program for Leading Innovative Research Team of Zhejiang Province(No.2023R01001)the Zhejiang Provincial Natural Science Foundation of China(Nos.LQ24F020008,LQ24F020012)the Foundation of State Key Laboratory of Public Big Data(No.[2022]417)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C01119).
文摘As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.
文摘This review explores the research activities surrounding the development and integration of smart electricity grids in Burkina Faso, a landlocked and arid territory in West Africa and one of the poorest countries in the world with significant energy challenges. It examines the current state of energy infrastructure in Burkina Faso, focusing on the integration of renewable energy sources, particularly solar photovoltaics. It highlights the role of smart grid technologies in enabling the efficient integration of renewable energy, improving grid stability and facilitating rural electrification. Additionally, the review addresses key challenges such as inadequate infrastructure, regulatory gaps and financial constraints that hinder the deployment of smart grids in the country. By analysing existing research and ongoing projects, this paper provides a comprehensive overview of the opportunities and barriers to implementing a smart electricity grid in Burkina Faso and offers recommendations for future development and policy frameworks.
文摘The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-OCESE,which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks.This is one of the methods suggested in this study,which aims to enhance the sizing,positioning,and operational characteristics of structured ESS under dynamic grid conditions.Particularly,the aim is to maximize efficiency.A multiobjective genetic algorithm,the GA-OCESE framework,considers all these factors simultaneously.Besides considering cost-efficiency,response time,and energy use,the system also considers all these elements simultaneously.This enables it to effectively react to load uncertainty and variations in inputs connected to renewable sources.Results of an experimental assessment conducted on a standardized grid simulation platform indicate that by increasing energy use efficiency by 17.6%and reducing peak-load effects by 22.3%,GA-OCESE outperforms previous heuristic-based methods.This was found by contrasting the outcomes of the assessment with those of the evaluation.The results of the assessment helped to reveal this.The proposed approach will provide utility operators and energy planners with a decision-making tool that is both scalable and adaptable.This technology is particularly well-suited for smart grids,microgrid systems,and power infrastructures that heavily rely on renewable energy.Every technical component has been carefully recorded to ensure accuracy,reproducibility,and relevance across all power systems engineering software uses.This was done to ensure the program’s relevance.
文摘This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies.
文摘The rapid evolution and expanding scale of AI(artificial intelligence)technologies exert unprecedented energy demands on global electrical grids.Powering computationally intensive tasks such as large-scale AI model training and widespread real-time inference necessitates substantial electricity consumption,presenting a significant challenge to conventional power infrastructure.This paper examines the critical need for a fundamental shift towards smart energy grids in response to AI’s growing energy footprint.It delves into the symbiotic relationship wherein AI acts as a significant energy consumer while offering the intelligence required for dynamic load management,efficient integration of renewable energy sources,and optimized grid operations.We posit that advanced smart grids are indispensable for facilitating AI’s sustainable growth,underscoring this synergy as a pivotal advancement toward a resilient energy future.
基金supported by the Presidential Foundation of China Academy of Engineering Physics(Grant No.YZJJZQ2022016)the National Natural Science Foundation of China(Grant No.52207177).
文摘The extraction characteristics of multi-charged ions produced by ion sources are important for some useful applications.In this paper,the extraction process of Cu^(+),Cu^(2+),Cu^(3+),and Cu^(4+)mixed ions is simulated by setting ideal physical parameters in a two-dimensional particle-in-cell(PIC)code,and the evolution characteristics of density and velocity distributions of different charged ions during plasma(density about 10^(15)m^(-3))motion and extraction are presented.Besides,the effects of grid thickness and grid aperture on the motion behavior of different charged ions and the extracted ion current are analyzed.The results showed that the ion diffusion increases with the increase of the ion charge,and higher charged ions are more likely to be affected by the grid.This provides support for further understanding of the extraction characteristics of multi-charged mixed ion beams.
基金supported by the Researchers Supporting Project number RSP2025R244,King Saud University,Riyadh,Saudi Arabia.
文摘This research presents an analysis of smart grid units to enhance connected units’security during data transmissions.The major advantage of the proposed method is that the system model encompasses multiple aspects such as network flow monitoring,data expansion,control association,throughput,and losses.In addition,all the above-mentioned aspects are carried out with neural networks and adaptive optimizations to enhance the operation of smart grid networks.Moreover,the quantitative analysis of the optimization algorithm is discussed concerning two case studies,thereby achieving early convergence at reduced complexities.The suggested method ensures that each communication unit has its own distinct channels,maximizing the possibility of accurate measurements.This results in the provision of only the original data values,hence enhancing security.Both power and line values are individually observed to establish control in smart grid-connected channels,even in the presence of adaptive settings.A comparison analysis is conducted to showcase the results,using simulation studies involving four scenarios and two case studies.The proposed method exhibits reduced complexity,resulting in a throughput gain of over 90%.
文摘Ensuring the reliability of power systems in microgrids is critical,particularly under contingency conditions that can disrupt power flow and system stability.This study investigates the application of Security-Constrained Optimal Power Flow(SCOPF)using the Line Outage Distribution Factor(LODF)to enhance resilience in a renewable energy-integrated microgrid.The research examines a 30-bus system with 14 generators and an 8669 MW load demand,optimizing both single-objective and multi-objective scenarios.The single-objective opti-mization achieves a total generation cost of$47,738,while the multi-objective approach reduces costs to$47,614 and minimizes battery power output to 165.02 kW.Under contingency conditions,failures in transmission lines 1,22,and 35 lead to complete power loss in those lines,requiring a redistribution strategy.Implementing SCOPF mitigates these disruptions by adjusting power flows,ensuring no line exceeds its capacity.Specifically,in contingency 1,power in channel 4 is reduced from 59 to 32 kW,while overall load shedding is minimized to 0.278 MW.These results demonstrate the effectiveness of SCOPF in maintaining stability and reducing economic losses.Unlike prior studies,this work integrates LODF into SCOPF for large-scale microgrid applications,offering a computationally efficient contingency management framework that enhances grid resilience and supports renewable energy adoption.
基金Supported by the National Natural Science Foundation of China(Grant No.12471298)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.23JSQ031)the Shaanxi Province College Student Innovation and Entrepreneurship Training Program(Grant Nos.S202210699481 and S202310699324X).
文摘Fibonacci sequence,generated by summing the preceding two terms,is a classical sequence renowned for its elegant properties.In this paper,leveraging properties of generalized Fibonacci sequences and formulas for consecutive sums of equidistant sub-sequences,we investigate the ratio of the sum of numbers along main-diagonal and sub-diagonal of odd-order grids containing generalized Fibonacci sequences.We show that this ratio is solely dependent on the order of the grid,providing a concise and splendid identity.
基金the support of the National Natural Science Foundation of China(72325006,72488101,and 72293601)the Sze Family Foundationthe Climate Imperative Foundation(#2024-001465)
文摘In China,electric vehicle(EV)fast-charging power has quadrupled in the past five years,progressing toward 10-minute ultrafast charging.This rapid increase raises concerns about the impact on the power grid including increased peak power demand and the need for substantial upgrades to power infrastruc-ture.Here,we introduce an integrated model to assess fast and ultrafast charging impacts for represen-tative charging stations in China,combining real-world charging patterns and detailed station optimization models.We find that larger stations with 12 or more chargers experience modest peak power increases of less than 30%when fast-charging power is doubled,primarily because shorter charg-ing sessions are less likely to overlap.For more typical stations(e.g.,8-9 chargers and 120 kW·charger^(−1)),upgrading chargers to 350-550 kW while allowing managed dynamic waiting strategies(of∼1 minute)can reduce overall charging times to∼9 minutes.At stations,deploying battery storage and/or expanding transformers can help manage future increases in station loads,yet the primary device cost of the former is∼4 times higher than that of the latter.Our results offer insights for charging infrastructure planning,EV-grid interactions,and associated policymaking.
文摘The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.
基金National Key R&D Program of China(No.2022YFB3403500)the Science and Technology Program of Gansu Province(No.22JR5RA784).
文摘To address the future application requirements of carbon-based material grids for ion thrusters characterized by high thrust,elevated specific impulse,and extended operational life,research was conducted using the LIPS-100 ion thruster developed by the Lanzhou Institute of Physics.This study focused on small-diameter configurations of carbon-carbon composite material grids.Successful development was achieved for both a 10 cm split carbon-carbon planar grid and an integrated carbon-carbon convex grid component.Performance variations among different configurations were investigated through extensive performance tests across the wide-range from 1 to 25 mN,as well as 200 h lifespan assessments under typical conditions at 20 mN.The results indicate that the two configurations of the carbon-carbon grid can achieve stable operation across the broad range of 1-20 mN,with beam current fluctuations ranging from 368 to 379 mA and accel grid current fluctuations between 1.58 and 1.81 mA.Furthermore,the key performance parameters of these grids were comparable to those of the traditional molybdenum grids.Under conditions of high thrust and power,the carbon-carbon grid demonstrated a significant reduction in the intercepted current at the accel grid.In comparison to the split carbon-carbon planar grid,the weight of the integrated carbon-carbon convex composite grid was reduced by 17.5%,the anode voltage decreased by approximately 2.4%-8.6%,and the cathode keeper voltage was reduced by approximately 3.5%-12.4%.It can be concluded that the integrated carbon-carbon convex grid offers distinct advantages in terms of hot-state structural stability,suppression of grid etching rates,and enhancement of thruster discharge efficiency.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0502)the National Natural Science Foundation of China(32322006)+1 种基金the Major Program for Basic Research Project of Yunnan Province(202103AF140005 and 202101BC070002)the Practice Innovation Fund for Professional Degree Graduates of Yunnan University(ZC-22222401).
文摘The study of plant diversity is often hindered by the challenge of integrating data from different sources and different data types.A standardized data system would facilitate detailed exploration of plant distribution patterns and dynamics for botanists,ecologists,conservation biologists,and biogeographers.This study proposes a gridded vector data integration method,combining grid-based techniques with vectorization to integrate diverse data types from multiple sources into grids of the same scale.Here we demonstrate the methodology by creating a comprehensive 1°×1°database of western China that includes plant distribution information and environmental factor data.This approach addresses the need for a standardized data system to facilitate exploration of plant distribution patterns and dynamic changes in the region.
文摘Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.
基金supported by the National Natural Science Foundation of China under Grant 52407069the Science and Technology Project of Zhejiang Province under Grant 2024C01254the China Postdoctoral Science Foundation under Grant 2024T170766 and 2024M762824。
文摘The phase-locked loop(PLL)plays an essential role for synchronizing renewable power generation to the grid.However,as per the grid-code compliance for reactive current support,the PLL output frequency fluctuates significantly and exceeds the limitation,which seriously threaten the safe supply of electricity.In this paper,the underlying theoretical mechanism and dominant force behind the maximum PLL frequency deviation are revealed.Accordingly,two feasible approaches are proposed to enhance the PLL frequency stability with validations in experimental results.