期刊文献+
共找到6,240篇文章
< 1 2 250 >
每页显示 20 50 100
A non-probabilistic reliability topology optimization method based on aggregation function and matrix multiplication considering buckling response constraints
1
作者 Lei WANG Yingge LIU +2 位作者 Juxi HU Weimin CHEN Bing HAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期321-336,共16页
A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linea... A non-probabilistic reliability topology optimization method is proposed based on the aggregation function and matrix multiplication.The expression of the geometric stiffness matrix is derived,the finite element linear buckling analysis is conducted,and the sensitivity solution of the linear buckling factor is achieved.For a specific problem in linear buckling topology optimization,a Heaviside projection function based on the exponential smooth growth is developed to eliminate the gray cells.The aggregation function method is used to consider the high-order eigenvalues,so as to obtain continuous sensitivity information and refined structural design.With cyclic matrix programming,a fast topology optimization method that can be used to efficiently obtain the unit assembly and sensitivity solution is conducted.To maximize the buckling load,under the constraint of the given buckling load,two types of topological optimization columns are constructed.The variable density method is used to achieve the topology optimization solution along with the moving asymptote optimization algorithm.The vertex method and the matching point method are used to carry out an uncertainty propagation analysis,and the non-probability reliability topology optimization method considering buckling responses is developed based on the transformation of non-probability reliability indices based on the characteristic distance.Finally,the differences in the structural topology optimization under different reliability degrees are illustrated by examples. 展开更多
关键词 BUCKLING topology optimization aggregation function uncertainty propagation analysis non-probabilistic reliability
在线阅读 下载PDF
Improved Inverse First-Order Reliability Method for Analyzing Long-Term Response Extremes of Floating Structures
2
作者 Junrong Wang Zhuolantai Bai +3 位作者 Botao Xie Jie Gui Haonan Gong Yantong Zhou 《哈尔滨工程大学学报(英文版)》 2025年第3期552-566,共15页
Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an... Long-term responses of floating structures pose a great concern in their design phase. Existing approaches for addressing long-term extreme responses are extremely cumbersome for adoption. This work aims to develop an approach for the long-term extreme-response analysis of floating structures. A modified gradient-based retrieval algorithm in conjunction with the inverse first-order reliability method(IFORM) is proposed to enable the use of convolution models in long-term extreme analysis of structures with an analytical formula of response amplitude operator(RAO). The proposed algorithm ensures convergence stability and iteration accuracy and exhibits a higher computational efficiency than the traditional backtracking method. However, when the RAO of general offshore structures cannot be analytically expressed, the convolutional integration method fails to function properly. A numerical discretization approach is further proposed for offshore structures in the case when the analytical expression of the RAO is not feasible. Through iterative discretization of environmental contours(ECs) and RAOs, a detailed procedure is proposed to calculate the long-term response extremes of offshore structures. The validity and accuracy of the proposed approach are tested using a floating offshore wind turbine as a numerical example. The long-term extreme heave responses of various return periods are calculated via the IFORM in conjunction with a numerical discretization approach. The environmental data corresponding to N-year structural responses are located inside the ECs, which indicates that the selection of design points directly along the ECs yields conservative design results. 展开更多
关键词 Long-term response analysis Floating structures Inverse first-order reliability method Convolution model Gradient-based retrieval algorithm Environmental contour method
在线阅读 下载PDF
Fatigue reliability assessment of turbine blade via direct probability integral method
3
作者 Guohai CHEN Pengfei GAO +1 位作者 Hui LI Dixiong YANG 《Chinese Journal of Aeronautics》 2025年第4期305-320,共16页
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random... Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade. 展开更多
关键词 Engine turbine blade Low-cycle fatigue High-cycle fatigue Fatigue reliability Direct probability integral method
原文传递
Dimensional synchronous modeling-based enhanced Kriging algorithm and adaptive Copula method for multi-objective synthetical reliability analyses
4
作者 Cheng LU Yunwen FENG +1 位作者 Chengwei FEI Da TENG 《Chinese Journal of Aeronautics》 2025年第9期144-165,共22页
To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise mode... To accomplish the reliability analyses of the correlation of multi-analytical objectives,an innovative framework of Dimensional Synchronous Modeling(DSM)and correlation analysis is developed based on the stepwise modeling strategy,cell array operation principle,and Copula theory.Under this framework,we propose a DSM-based Enhanced Kriging(DSMEK)algorithm to synchronously derive the modeling of multi-objective,and explore an adaptive Copula function approach to analyze the correlation among multiple objectives and to assess the synthetical reliability level.In the proposed DSMEK and adaptive Copula methods,the Kriging model is treated as the basis function of DSMEK model,the Multi-Objective Snake Optimizer(MOSO)algorithm is used to search the optimal values of hyperparameters of basis functions,the cell array operation principle is adopted to establish a whole model of multiple objectives,the goodness of fit is utilized to determine the forms of Copula functions,and the determined Copula functions are employed to perform the reliability analyses of the correlation of multi-analytical objectives.Furthermore,three examples,including multi-objective complex function approximation,aeroengine turbine bladeddisc multi-failure mode reliability analyses and aircraft landing gear system brake temperature reliability analyses,are performed to verify the effectiveness of the proposed methods,from the viewpoints of mathematics and engineering.The results show that the DSMEK and adaptive Copula approaches hold obvious advantages in terms of modeling features and simulation performance.The efforts of this work provide a useful way for the modeling of multi-analytical objectives and synthetical reliability analyses of complex structure/system with multi-output responses. 展开更多
关键词 Adaptive Copula method Aeroengine turbine bladeddisc Aircraft landing gear system Correlation of multianalytical objectives Dimensional synchronous modeling-based enhanced Kriging algorithm reliability analyses
原文传递
A Bayesian Updating Method for Non-Probabilistic Reliability Assessment of Structures with Performance Test Data 被引量:5
5
作者 Jiaqi He Yangjun Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期777-800,共24页
For structures that only the predicted bounds of uncertainties are available,this study proposes a Bayesianmethod to logically evaluate the nonprobabilistic reliability of structures based on multi-ellipsoid convex mo... For structures that only the predicted bounds of uncertainties are available,this study proposes a Bayesianmethod to logically evaluate the nonprobabilistic reliability of structures based on multi-ellipsoid convex model and performance test data.According to the given interval ranges of uncertainties,we determine the initial characteristic parameters of a multi-ellipsoid convex set.Moreover,to update the plausibility of characteristic parameters,a Bayesian network for the information fusion of prior uncertainty knowledge and subsequent performance test data is constructed.Then,an updated multi-ellipsoid set with the maximum likelihood of the performance test data can be achieved.The credible non-probabilistic reliability index is calculated based on the Kriging-based surrogate model of the performance function.Several numerical examples are presented to validate the proposed Bayesian updating method. 展开更多
关键词 Convex model Bayesian method non-probabilistic reliability information fusion
在线阅读 下载PDF
Efficient Computational Method for the Non-Probabilistic Reliability of Linear Structural Systems 被引量:5
6
作者 Ruixing Wang Xiao jun Wang +1 位作者 Lei Wang Xianjia Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第3期284-299,共16页
The non-probabilistic reliability in higher dimensional situations cannot be calcu- lated efficiently using traditional methods, which either require a large amount of calculation or cause significant error. In this s... The non-probabilistic reliability in higher dimensional situations cannot be calcu- lated efficiently using traditional methods, which either require a large amount of calculation or cause significant error. In this study, an efficient computational method is proposed for the cal- culation of non-probabilistic reliability based on the volume ratio theory, specificMly for linear structural systems. The common expression for non-probabilistic reliability is obtained through formula derivation with the amount of computation considerably reduced. The compatibility be- tween non-probabilistic and probabilistic safety measures is demonstrated through the Monte Carlo simulation. The high efficiency of the presented method is verified by several numerical examples. 展开更多
关键词 non-probabilistic reliability linear structural system formula derivation compatibility high efficiency
原文传递
Efficient slope reliability and sensitivity analysis using quantile-based first-order second-moment method 被引量:2
7
作者 Zhiyong Yang Chengchuan Yin +2 位作者 Xueyou Li Shuihua Jiang Dianqing Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4192-4203,共12页
This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are... This paper introduces a novel approach for parameter sensitivity evaluation and efficient slope reliability analysis based on quantile-based first-order second-moment method(QFOSM).The core principles of the QFOSM are elucidated geometrically from the perspective of expanding ellipsoids.Based on this geometric interpretation,the QFOSM is further extended to estimate sensitivity indices and assess the significance of various uncertain parameters involved in the slope system.The proposed method has the advantage of computational simplicity,akin to the conventional first-order second-moment method(FOSM),while providing estimation accuracy close to that of the first-order reliability method(FORM).Its performance is demonstrated with a numerical example and three slope examples.The results show that the proposed method can efficiently estimate the slope reliability and simultaneously evaluate the sensitivity of the uncertain parameters.The proposed method does not involve complex optimization or iteration required by the FORM.It can provide a valuable complement to the existing approximate reliability analysis methods,offering rapid sensitivity evaluation and slope reliability analysis. 展开更多
关键词 Slope reliability Sensitivity analysis QUANTILE First-order second-moment method(FOSM) First-order reliability method(FORM)
在线阅读 下载PDF
MODIFIED SCHEME BASED ON SEMI-ANALYTIC APPROACH FOR COMPUTING NON-PROBABILISTIC RELIABILITY INDEX 被引量:5
8
作者 Xuyong Chen Chak-yin Tang +1 位作者 Chi-pong Tsui Jianping Fan 《Acta Mechanica Solida Sinica》 SCIE EI 2010年第2期115-123,共9页
A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, u... A new computation scheme proposed to tackle commensurate problems is devel- oped by modifying the semi-analytic approach for minimizing computational complexity. Using the proposed scheme, the limit state equations, usually referred to as the failure surface, are obtained from transformation of an interval variable to a normalized one. In order to minimize the computational cost, two algorithms for optimizing the calculation steps have been proposed. The monotonicity of the objective function can be determined from narrowing the scope of interval variables in normalized infinite space by incorporating the algorithms into the computational scheme. Two examples are used to illustrate the operation and computational efficiency of the approach. The results of these examples show that the proposed algorithms can greatly reduce the computation complexity without sacrificing the computational accuracy. The advantage of the proposed scheme can be even more efficient for analyzing sophistic structures. 展开更多
关键词 semi-analytic approach non-probabilistic reliability index interval variable state equation MONOTONICITY
在线阅读 下载PDF
A Comprehensive Model for Structural Non-Probabilistic Reliability and the Key Algorithms 被引量:2
9
作者 Wencai Sun Zichun Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第4期309-332,共24页
It is very difficult to know the exact boundaries of the variable domain for problems with small sample size,and the traditional convex set model is no longer applicable.In view of this,a novel reliability model was p... It is very difficult to know the exact boundaries of the variable domain for problems with small sample size,and the traditional convex set model is no longer applicable.In view of this,a novel reliability model was proposed on the basis of the fuzzy convex set(FCS)model.This new reliability model can account for different relations between the structural failure region and variable domain.Key computational algorithms were studied in detail.First,the optimization strategy for robust reliability is improved.Second,Monte Carlo algorithms(i.e.,uniform sampling method)for hyper-ellipsoidal convex sets were studied in detail,and errors in previous reports were corrected.Finally,the Gauss-Legendre integral algorithm was used for calculation of the integral reliability index.Three numerical examples are presented here to illustrate the rationality and feasibility of the proposed model and its corresponding algorithms. 展开更多
关键词 Structural reliability non-probabilistic fuzzy convex set robust reliability volume ratio-based reliability Monte Carlo Gauss-Legendre integral formula
在线阅读 下载PDF
An Efficient Strategy for Non-probabilistic Reliability-Based Multi-material Topology Optimization with Evidence Theory 被引量:2
10
作者 Qinghai Zhao Hongxin Zhang +3 位作者 Tiezhu Zhang Qingsong Hua Lin Yuan Wenyue Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2019年第6期803-821,共19页
It is essential to consider the effects of incomplete measurement,inaccurate information and inadequate cognition on structural topology optimization.For the multi-material structural topology optimization with non-pr... It is essential to consider the effects of incomplete measurement,inaccurate information and inadequate cognition on structural topology optimization.For the multi-material structural topology optimization with non-probability uncertainty,the multi-material interpolation model is represented by the ordered rational approximation of mat erial properties(ordered RAMP).Combined with structural compliance minimization,the multi-material topology optimization with reliability constraints is established.The corresponding non-probability uncertainties are described by the evidence theory,and the uniformity processing method is introduced to convert the evidence variables into random variables.The first-order reliability method is employed to search the most probable point under the reliability index constraint,and then the random variables are equivalent to the deterministic variables according to the geometric meaning of the reliability index and sensitivity information.Therefore,the non-probabilistic reliability-based multi-material topology optimization is transformed into the conventional deterministic optimization format,followed by the ordered RAMP method to solve the optimization problem.Finally,through numerical examples of 2D and 3D structures,the feasibility and effectiveness of the proposed method are verified to consider the geometrical dimensions and external loading uncertainties. 展开更多
关键词 Multi-material Topology optimization non-probabilistic reliability Evidence theory
原文传递
Reliability analysis of carbon fiber rod-reinforced umbilical cable under tension using an improved sampling method
11
作者 Yu Zhang Hong-Yu Zhang +2 位作者 Ran Xia Si-Ao Jiang Fang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2769-2778,共10页
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is... The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method. 展开更多
关键词 Umbilical cable Carbon fiber rod Failure analysis Response surface method reliability
原文传递
Non-Probabilistic Reliability Research on Multi-Variable Hydraulic Turbine Blade Model 被引量:1
12
作者 庞煜 张翔 +1 位作者 黄洪钟 赖喜德 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第5期584-587,共4页
Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to me... Based on the interval mathematics and possibility theory, the variables existing in hydraulic turbine blade are described. Considering the multi-failure mode in turbine blade, multi-variable model is established to meet the actual situation. Thus, non-probabilistic reliability index is presented by comparing with the output range and the given range. 展开更多
关键词 fuzzy variable interval variable multi-variable model non-probabilistic reliability possibility distribution
原文传递
Non-probabilistic fuzzy reliability analysis of pile foundation stability by interval theory 被引量:1
13
作者 曹文贵 张永杰 赵明华 《Journal of Central South University of Technology》 EI 2007年第6期864-869,共6页
Randomness and fuzziness are among the attributes of the influential factors for stability assessment of pile foundation. According to these two characteristics, the triangular fuzzy number analysis approach was intro... Randomness and fuzziness are among the attributes of the influential factors for stability assessment of pile foundation. According to these two characteristics, the triangular fuzzy number analysis approach was introduced to determine the probability-distributed function of mechanical parameters. Then the functional function of reliability analysis was constructed based on the study of bearing mechanism of pile foundation, and the way to calculate interval values of the functional function was developed by using improved interval-truncation approach and operation rules of interval numbers. Afterwards, the non-probabilistic fuzzy reliability analysis method was applied to assessing the pile foundation, from which a method was presented for non- probabilistic fuzzy reliability analysis of pile foundation stability by interval theory. Finally, the probability distribution curve of non- probabilistic fuzzy reliability indexes of practical pile foundation was concluded. Its failure possibility is 0.91%, which shows that the pile foundation is stable and reliable. 展开更多
关键词 pile foundation FUZZINESS interval theory interval-truncation approach non-probabilistic fuzzy reliability analysis
在线阅读 下载PDF
Theoretical analysis of non-probabilistic reliability based on interval model 被引量:2
14
作者 Xu-Yong Chen Jian-Ping Fan Xiao-Ya Bian 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第6期638-646,共9页
The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,t... The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points. 展开更多
关键词 non-probabilistic reliability Interval model Theoretical analysis Probable failure point
原文传递
Application of non-probabilistic reliability on aerostat capsule
15
作者 Zhu Zengqing Liu Guoliang 《High Technology Letters》 EI CAS 2018年第4期417-421,共5页
Aerostat capsule is small sample data,so designing reliability is very difficult to be obtained accurately by conventional probabilistic reliability method. Based on the interval non-probabilistic reliability theory,a... Aerostat capsule is small sample data,so designing reliability is very difficult to be obtained accurately by conventional probabilistic reliability method. Based on the interval non-probabilistic reliability theory,an instability mathematics model of envelope structure is studied,and the calculation formula of interval reliability index is put forward. Through the mechanical experiments of three capsule structures,the experimental results of the interval reliability are obtained. By comparing the theoretical and measured values,it is found that the theoretical reliability index is more conservative. Non-probabilistic reliability method can reflect the reliability degree of the capsule body under different loading conditions,which can provide some guidance for engineering application. 展开更多
关键词 non-probabilistic AEROSTAT reliability INDEX CAPSULE
在线阅读 下载PDF
Design of improved error-rate sliding window decoder for SC-LDPC codes: reliable termination and channel value reuse
16
作者 JIA Xishan LI Jining +3 位作者 YAO Yuan WANG Yifan LIU Bo XU Degang 《Optoelectronics Letters》 2025年第4期212-217,共6页
In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes u... In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication. 展开更多
关键词 reliable termination message retention mechanism reliable termination method sliding window decoderthe error rate sliding window decoder belief propagation bp decoding retained messages
原文传递
Development prospects of residual stress detection methods
17
作者 Xin LI Hanjun GAO Qiong WU 《Chinese Journal of Aeronautics》 2025年第7期601-603,共3页
In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At prese... In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At present, research on residual stress at home and abroad mainly focuses on the optimization of traditional detection technology, stress control of manufacturing process and service performance evaluation, among which research on residual stress detection methods mainly focuses on the improvement of the accuracy, sensitivity, reliability and other performance of existing detection methods, but it still faces many challenges such as extremely small detection range, low efficiency, large error and limited application range. 展开更多
关键词 residual stress flight safety reliability detection methods optimization traditional detection technology residual stress detection methods service performance evaluation IMPROVEMENT stress control
原文传递
Calibration and Reliability Analysis of Eccentric Compressive Concrete Column with High Strength Rebars
18
作者 Baojun Qin Hong Jiang +1 位作者 Wei Zhang Xiang Liu 《Structural Durability & Health Monitoring》 2025年第5期1203-1220,共18页
The utilization of high-strength steel bars(HSSB)within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement.Nevertheless,existing design codes exhibi... The utilization of high-strength steel bars(HSSB)within concrete structures demonstrates significant advantages in material conservation and mechanical performance enhancement.Nevertheless,existing design codes exhibit limitations in addressing the distinct statistical characteristics of HSSB,particularly regarding strength design parameters.For instance,GB50010-2010 fails to specify design strength values for reinforcement exceeding 600 MPa,creating technical barriers for advancing HSSB implementation.This study systematically investigates the reliability of eccentric compression concrete columns reinforced with 600 MPa-grade HSSB through high-order moment method analysis.Material partial factors were calibrated against target reliability indices prescribed by GB50068-2018,incorporating critical variables including live-to-dead load ratios,design methodologies,and service conditions.The findings show that the value of k significantly affects the calibration of material partial factors,impacting the reliability of bearing capacity.Considering various k values and target reliability indices,it is recommended that the material partialfactorbe setat1.15,implyingthatthedesignstrengthfor600MPahigh-strengthsteelbars shouldbe considered as 522 MPa.For safety levels I and II,load adjustment factors of 1.1 and 0.9,respectively,may be applied. 展开更多
关键词 reliability high-strength steel rebar concrete column material partial factor high-order moment method failure probability
在线阅读 下载PDF
A Fully Analytical Approach for the Real-Time Dynamic Reliability Evaluation of Composite Power Systems with Renewable Energy Sources
19
作者 Longxun Xu Bo Hu +4 位作者 Changzheng Shao Kaigui Xie Congcong Pan Heng-Ming Tai Wenyuan Li 《Engineering》 2025年第8期144-157,共14页
Renewable energy sources(RES)have strong uncertainties,which significantly increase the risks of power imbalance and load shedding in composite power systems.It is thus necessary to evaluate the operational reliabilit... Renewable energy sources(RES)have strong uncertainties,which significantly increase the risks of power imbalance and load shedding in composite power systems.It is thus necessary to evaluate the operational reliability for guiding economic dispatch and reducing the risks.Current methods cannot meet the requirement for the operational timeliness of reliability evaluations due to the high computa-tional complexity of the optimal power flow(OPF)calculations of massive contingencies.This paper pro-poses a fully analytical approach to construct fast-to-run analytical functions of reliability indices and avoid reassessments when the load and RES change.The approach consists of uniform design(UD)-based contingency screening and a modified stochastic response surface method(mSRSM).The contin-gency screening method is used to select critical contingencies while considering the uncertainties.The mSRSM is used to construct the analytical functions of the load shedding to the load and RES gener-ation for the selected contingencies.An analytical function of a smooth virtual variable that maps to the load shedding is established in such a way that,when the load and RES vary,the reliability can be assessed within a very short time rather than using laborious OPF calculations.Case studies illustrate the excellent performance of the proposed method for real-time reliability evaluation. 展开更多
关键词 Fully analytical approach Modified stochastic response surface method Polynomial chaos expansion reliability evaluation Uniform design-based contingency screening
在线阅读 下载PDF
Fatigue correlation reliability evaluation of heavy-haul railway bridges
20
作者 Mingyang ZHANG Mengcheng CHEN +2 位作者 Wei FANG Kaicheng XU Hong HUANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1295-1314,共20页
The fatigue of heavy-haul railway bridges is considered a key concern due to high stress levels and cyclic loading.The evaluation of fatigue reliability is required to include factor correlations.A major challenge is ... The fatigue of heavy-haul railway bridges is considered a key concern due to high stress levels and cyclic loading.The evaluation of fatigue reliability is required to include factor correlations.A major challenge is presented by the construction of the cumulative distribution function(CDF)and the description of correlations between random variables.In this study,the copula function is used to analyze the fatigue failure probability of the Shuohuang heavy-haul railway bridge.A C-vine copula(CVC)-based joint probability density function(JPDF)is derived with eight correlated parameters.To enhance efficiency in small failure probability calculations,the subset simulation and most probable point(MPP)Monte Carlo importance sampling are introduced based on the Rosenblatt transform and C-vine model.Comparisons with traditional Monte Carlo methods confirm that high accuracy and efficiency are achieved.The results show that when parameter correlations are ignored,failure probability is underestimated,increasing safety risks in bridge assessments. 展开更多
关键词 heavy-haul railway bridge fatigue correlation reliability correlated ran-dom variable C-vine copula(CVC) subset simulation method Monte Carlo important sampling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部