期刊文献+
共找到102,774篇文章
< 1 2 250 >
每页显示 20 50 100
Shear mechanical properties and energy evolution of rock-like samples containing multiple combinations of non-persistent joints 被引量:2
1
作者 Daping Tai Shengwen Qi +3 位作者 Bowen Zheng Chonglang Wang Songfeng Guo Guangming Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1651-1670,共20页
Discontinuities are often considered as important factors responsible for the instability caused by shear failure in engineering rock mass,and energy-driven instability is the root cause of rock failure.However,few st... Discontinuities are often considered as important factors responsible for the instability caused by shear failure in engineering rock mass,and energy-driven instability is the root cause of rock failure.However,few studies focus on the energy evolution during the failure process using a three-dimensional(3D)numerical model.In this study,a series of laboratory direct shear tests on rock-like samples is numer-ically simulated using bonded particle models(BPMs)with multiple combinations of discontinuous in the particle flow code(PFC3D),in which the location and size of the particles conform to the uniform distribution.The effects of joint row number and inclination on the stress-strain characteristics and failure mode of rock were studied from the perspective of microcrack growth and energy evolution.The results showed that,when the number of joint rows Nr>1,the shear failure region does not change with the increase of Nr for the type B(2-columnn multiple-row at center)and the type C(2-column multiple-row at edge)as compared to the type A(1-column multiple-row at center)joint models.Notably,joints significantly increase the post-peak energy dissipation but have little effect on the proportion of energy before the peak.Friction consumes most of the energy while kinetic energy accounts for less than 1%of total energy during the shear process.Peak elastic strain energy follows the variation trend of peak shear displacement.The development and accumulation of microcracks directly affect the energy dissipation,and there is a significant linear relationship between the cumulative number of critical microcracks and the critical dissipated energy at the failure,when the dip direction of joints is opposite to the shear direction,more microcracks will be accumulated at the peak time,resulting in more energy dissipation.The results contribute to deeply understanding the shear failure process of non-persistent jointed mass. 展开更多
关键词 non-persistent joints Shear behavior Energy evolution Particle flow code(PFC3D)
在线阅读 下载PDF
Strength behaviour of a model rock intersected by non-persistent joint 被引量:6
2
作者 Divya Shaunik Mahendra Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第6期1243-1255,共13页
Several constructions in the field of civil engineering quite often need to deal with rocks.Strength behaviour of rock intersected by a discontinuity or a set of discontinuities has been a topic of keen interest for e... Several constructions in the field of civil engineering quite often need to deal with rocks.Strength behaviour of rock intersected by a discontinuity or a set of discontinuities has been a topic of keen interest for engineering community.The popular attributes of discontinuities that have been given due importance are their frequency,orientation and surface characteristics.Non-persistency,however,has been given little attention.This article presents an experimental study wherein focus has been made on the effect of non-persistency of the joint on the uniaxial compressive strength(UCS)of a model rock for various geometries such as orientation,discontinuity length ratio and number of joint segments.The applicability of single plane of weakness theory(SPWT)to assess the strength of jointed specimens has also been evaluated.It has been noticed that SPWT captures the strength behaviour only for a narrow range of discontinuity orientations.As an improvement,an approach is suggested by extending concepts of degree of persistence and joint factor to have a better understanding towards strength behaviour of rocks intersected by non-persistent joints. 展开更多
关键词 Uniaxial compressive STRENGTH (UCS) joint segment non-persistency joint factor
在线阅读 下载PDF
Failure behavior around a circular opening in a rock mass with non-persistent joints:A parallel-bond stress corrosion approach 被引量:3
3
作者 YANG Xu-xu JING Hong-wen +1 位作者 CHEN Kun-fu YANG Sheng-qi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2406-2420,共15页
The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior ... The stability of underground excavations is influenced by discontinuities interspaced in surrounding rock masses as well as the stress condition. In this work, a numerical study was undertaken on the failure behavior around a circular opening in a rock mass having non-persistent open joints using PFC software package. A parallel-bond stress corrosion(PSC) approach was incorporated to drive the failure of rock mass around the circular opening, such that the whole progressive failure process after excavation was reproduced. Based on the determined micro parameters for intact material and joint segments, the failure process around the circular opening agrees very well with that obtained through laboratory experiment. A subsequent parametric study was then carried out to look into the influence of lateral pressure coefficient, joint dip angle and joint persistency on the failure pattern and crack evolution of the rock mass around the circular opening. Three failure patterns identified are step path failure, planar failure and rotation failure depending on the lateral pressure coefficient. Moreover, the increment of joint dip angle and joint persistency aggravates the rock mass failure around the opening. This study offers guideline on stability estimation of underground excavations. 展开更多
关键词 failure behavior circular OPENING non-persistent joint PFC software PACKAGE stress corrosion
在线阅读 下载PDF
Numerical simulations of failure behavior around a circular opening in a non-persistently jointed rock mass under biaxial compression 被引量:7
4
作者 Yang Xuxu Jing Hongwen Chen Kunfu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期729-738,共10页
Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones aro... Pre-existing discontinuities change the mechanical properties of rock masses,and further influence failure behavior around an underground opening.In present study,the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations.First,the micro parameters of the PFC^(3D) model were carefully calibrated using the macro mechanical properties determined in physical experiments implemented on jointed rock models.Then,a parametrical study was undertaken of the effect of stress condition,joint dip angle and joint persistency.Under low initial stress,the confining stress improves the mechanical behavior of the surrounding rock masses;while under high initial stress,the surrounding rock mass failed immediately following excavation.At small dip angles the cracks around the circular opening developed generally outwards in a step-path failure pattern;whereas,at high dip angles the surrounding rock mass failed in an instantaneous intact rock failure pattern.Moreover,the stability of the rock mass around the circular opening deteriorated significantly with increasing joint persistency. 展开更多
关键词 Underground opening Failure behavior non-persistent joints Rock mass PFC^3D
在线阅读 下载PDF
Shear properties of non-persistent coplanar fractured hard rocks under normal stress unloading
5
作者 Guoqing Chen Liangjie Gu +2 位作者 Qiang Xu Xing Yang Yang Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3593-3608,共16页
During the excavation of large-scale rock slopes and deep hard rock engineering,the induced rapid unloading serves as the primary cause of rock mass deformation and failure.The essence of this phenomenon lies in the o... During the excavation of large-scale rock slopes and deep hard rock engineering,the induced rapid unloading serves as the primary cause of rock mass deformation and failure.The essence of this phenomenon lies in the opening-shear failure process triggered by the normal stress unloading of fractured rock mass.In this study,we focus on local-scale rock fracture and conduct direct shear tests under different normal stress unloading rates on five types of non-persistent fractured hard rocks.The aim is to analyze the influence of normal stress unloading rates on the failure modes and shear mechanical characteristics of non-persistent fractured rocks.The results indicate that the normal unloading displacement decreases gradually with increasing normal stress unloading rate,while the influence of normal stress unloading rate on shear displacement is not significant.As the normal stress unloading rate increases,the rocks brittle failure process accelerates,and the degree of rocks damage decreases.Analysis of the stress state on rock fracture surfaces reveals that increasing the normal stress unloading rate enhances the compressive stress on rocks,leading to a transition in the failure mode from shear failure to tensile failure.A negative exponential strength formula was proposed,which effectively fits the relationship between failure normal stress and normal stress unloading rate.The findings enrich the theoretical foundation of unloading rock mechanics and provide theoretical support for disasters prevention and control in rock engineering excavations. 展开更多
关键词 Shear properties non-persistent coplanar fractures Normal stress unloading rate Hard rocks Acoustic emission(AE)
在线阅读 下载PDF
Face-Pedestrian Joint Feature Modeling with Cross-Category Dynamic Matching for Occlusion-Robust Multi-Object Tracking
6
作者 Qin Hu Hongshan Kong 《Computers, Materials & Continua》 2026年第1期870-900,共31页
To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba... To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions. 展开更多
关键词 Cross-category dynamic binding joint feature modeling face-pedestrian association multi object tracking occlusion robustness
在线阅读 下载PDF
Microstructure evolution and corrosion behavior of refill friction stir spot welding joint for dissimilar Al alloys
7
作者 Fang-yuan JIANG Da ZHANG +3 位作者 Yan-kun MA Jiang-tao XIONG Wei GUO Jing-long LI 《Transactions of Nonferrous Metals Society of China》 2026年第1期80-95,共16页
The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural ... The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure. 展开更多
关键词 refill friction stir spot welding high strength Al alloy dissimilar joint microstructure evolution corrosion behavior
在线阅读 下载PDF
Coronal plane alignment of the knee phenotypes and ankle joint coronal plane alignment patterns in Egyptian population
8
作者 Ahmed A Khalifa Mohamed Moustafa +3 位作者 Shikuria Lemma Mostafa Fayez Ahmed M Abdelaal Amr A Fadle 《World Journal of Orthopedics》 2026年第1期67-80,共14页
BACKGROUND In an era leaning toward a personalized alignment of total knee arthroplasty,coronal plane alignment of the knee(CPAK)phenotypes for each population are studied;furthermore,other possible variables affectin... BACKGROUND In an era leaning toward a personalized alignment of total knee arthroplasty,coronal plane alignment of the knee(CPAK)phenotypes for each population are studied;furthermore,other possible variables affecting the alignment,such as ankle joint alignment,should be considered.AIM To determine CPAK distribution in the North African(Egyptian)population with knee osteoarthritis and to assess ankle joint line orientation(AJLO)adaptations across different CPAK types.METHODS A cross-sectional study was conducted on patients with primary knee osteoarthritis and normal ankle joints.Radiographic parameters included the mechanical lateral distal femoral angle,medial proximal tibial angle,and the derived calculations of joint line obliquity(JLO)and arithmetic hip-knee-ankle angle(aHKA).The tibial plafond horizontal angle(TPHA)was used for AJLO assessment,where 0°is neutral(type N),<0°is varus(type A),and>0°is valgus(type B).The nine CPAK types were further divided into 27 subtypes after incorporating the three AJLO types.RESULTS A total of 527 patients(1054 knees)were included for CPAK classification,and 435 patients(870 knees and ankles)for AJLO assessment.The mean age was 57.2±7.8 years,with 79.5%females.Most knees(76.4%)demonstrated varus alignment(mean aHKA was-5.51°±4.84°)and apex distal JLO(55.3%)(mean JLO was 176.43°±4.53°).CPAK types I(44.3%),IV(28.6%),and II(10%)were the most common.Regarding AJLO,70.2%of ankles exhibited varus orientation(mean TPHA was-5.21°±6.45°).The most frequent combined subtypes were CPAK type I-A(33.7%),IV-A(21.5%),and I-N(6.9%).A significant positive correlation was found between the TPHA and aHKA(r=0.40,P<0.001).CONCLUSION In this North African cohort,varus knee alignment with apex distal JLO and varus AJLO predominated.CPAK types I,IV,and II were the most common types,while subtypes I-A,IV-A,and I-N were commonly occurring after incorporating AJLO types;furthermore,the AJLO was significantly correlated to aHKA. 展开更多
关键词 Coronal plane alignment of the knee classification Coronal alignment Ankle joint alignment Knee arthroplasty Knee replacement North African population
暂未订购
Bearing capacity of foundations on rock slopes intersected by non-persistent discontinuity 被引量:3
9
作者 Divya Shaunik Mahendra Singh 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期669-674,共6页
Rocks encountered in foundations of heavy structures are invariably intersected by discontinuities(joints).In the past,several studies have been performed by researchers to incorporate the effect of fully persistent j... Rocks encountered in foundations of heavy structures are invariably intersected by discontinuities(joints).In the past,several studies have been performed by researchers to incorporate the effect of fully persistent joints in the assessment of the load-carrying capacity of rocks.However,in the field,the joints are non-persistent,and an assumption of full persistency will underestimate the capacity.Recently,Shaunik&Singh have studied the influence of non-persistency,number of joint segments and discontinuity orientation on the strength behaviour of rock specimens(Shaunik and Singh,2019).Bell’s approach can be used to obtain the bearing capacity of shallow foundations placed in jointed rocks.In the present study,results of the experimental work(Shaunik and Singh,2019)conducted by Shaunik&Singh have been used to suggest expressions by extending Bell’s approach for computing bearing capacity of the foundation placed near the crown of a rock slope.Easy to use design charts are also presented for field application.Finally,a real-life problem from Indian Garhwal Himalayas is considered,and the approach suggested in this study is utilised to obtain the bearing capacity of a bridge foundation as a function of uniaxial compressive strength(UCS)of intact rock,joint friction,spacing and orientation of joint,nonpersistency and number of joint segments. 展开更多
关键词 Uniaxial compressive strength(UCS) joint segment DISCONTINUITY non-persistency Bell’s approach
在线阅读 下载PDF
Changes in persistent and non-persistent extreme precipitation in Chinafrom 1961 to 2016 被引量:8
10
作者 HE Bing-Rui ZHAI Pan-Mao 《Advances in Climate Change Research》 SCIE CSCD 2018年第3期177-184,共8页
In this study, based on daily gage precipitation data of 2480 stations from 1961 to 2016, the summer (JuneeAugust) extreme precipitationevent was defined using the 95th percentile, and the changes in persistent (la... In this study, based on daily gage precipitation data of 2480 stations from 1961 to 2016, the summer (JuneeAugust) extreme precipitationevent was defined using the 95th percentile, and the changes in persistent (last for at least 2 d) and non-persistent (1 d) extreme precipitation inChina were analyzed. The results indicate that under global warming, the contribution of extreme precipitation to total summer precipitationincreased in most areas of China, but it decreased in the central part of Inner Mongolia and the Sichuan Basin. In North and Southwest China,both persistent and non-persistent extreme precipitation decreased; the decreasing trend of persistent extreme precipitation was more prominent;thus, extreme precipitation event occurred more as non-persistent event. Meanwhile, in the Yangtze River Basin and South China, both types ofextreme precipitation increased particularly the persistent extreme precipitation; persistent extreme precipitation occurred more compared withnon-persistent events. 展开更多
关键词 PERSISTENT EXTREME PRECIPITATION non-persistent EXTREME PRECIPITATION PERSISTENCE structure China
在线阅读 下载PDF
Prevalence of lactase persistent/non-persistent genotypes and milk consumption in a young population in north-west Russia 被引量:2
11
作者 Yulia Khabarova Suvi Torniainen +3 位作者 Hanna Nurmi Irma Jrvel Mauri Isokoski Kari Mattila 《World Journal of Gastroenterology》 SCIE CAS CSCD 2009年第15期1849-1853,共5页
AIM: TO estimate the prevalence of the lactase non-persistent genotype (C/C-23910) in a northern Russian population in accordance with ethnicity, and to evaluate self-reported milk consumption depending on lactase ... AIM: TO estimate the prevalence of the lactase non-persistent genotype (C/C-23910) in a northern Russian population in accordance with ethnicity, and to evaluate self-reported milk consumption depending on lactase activity. METHODS: Blood samples for genotyping lactase activity, defining the C/T-13910 variant by polymerase chain reaction, and direct sequencing were taken from 231 medical students of Russian origin aged 17-26 years. We analyzed milk product consumption by questionnaire which was specially designed for the estimation of milk consumption and abdominal complaints. RESULTS: We found that the prevalence of the C/C-13190 genotype in the northern Russian population was 35.6%. The other genotypes nearby C/T-13910 and associated with lactase activity were not present in the study population. The consumption of milk among people with the non-persistent genotype tended to be lower than among the lactose tolerant subjects, but was not statistically significant. CONCLUSION: An investigation of the lactase persistent genotype in a northern Russian population has not been performed before, The genotype did not affect the consumption of milk products in this population which could be explained by low consumption of milk products among the entire study population. 展开更多
关键词 C/C-13910 genotype Hypolactasia Lactasepersistence/non-persistence Lactose malabsorption Milk consumption North-west Russia
暂未订购
RB-DEM Modeling and Simulation of Non-Persisting Rough Open Joints Based on the IFS-Enhanced Method
12
作者 Hangtian Song Xudong Chen +3 位作者 Chun Zhu Qian Yin Wei Wang Qingxiang Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期337-359,共23页
When the geological environment of rock masses is disturbed,numerous non-persisting open joints can appear within it.It is crucial to investigate the effect of open joints on the mechanical properties of rock mass.How... When the geological environment of rock masses is disturbed,numerous non-persisting open joints can appear within it.It is crucial to investigate the effect of open joints on the mechanical properties of rock mass.However,it has been challenging to generate realistic open joints in traditional experimental tests and numerical simulations.This paper presents a novel solution to solve the problem.By utilizing the stochastic distribution of joints and an enhanced-fractal interpolation system(IFS)method,rough curves with any orientation can be generated.The Douglas-Peucker algorithm is then applied to simplify these curves by removing unnecessary points while preserving their fundamental shape.Subsequently,open joints are created by connecting points that move to both sides of rough curves based on the aperture distribution.Mesh modeling is performed to construct the final mesh model.Finally,the RB-DEM method is applied to transform the mesh model into a discrete element model containing geometric information about these open joints.Furthermore,this study explores the impacts of rough open joint orientation,aperture,and number on rock fracture mechanics.This method provides a realistic and effective approach for modeling and simulating these non-persisting open joints. 展开更多
关键词 non-persisting rough open joints stochastic distribution of joints enhanced-IFS method RB-DEM
在线阅读 下载PDF
Research on expansion joint for high-speed railway long-span bridges in China 被引量:2
13
作者 Hui Guo Jinzhou Jiang +8 位作者 Suoting Hu Chun Yang Qiqi Xiang Kou Luo Xinxin Zhao Bing Li Ziquan Yan Liubin Niu Jianye Zhao 《Railway Sciences》 2025年第1期52-81,共30页
Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the... Purpose–The bridge expansion joint(BEJ)is a key device for accommodating spatial displacement at the beam end,and for providing vertical support for running trains passing over the gap between the main bridge and the approach bridge.For long-span railway bridges,it must also be coordinated with rail expansion joint(REJ),which is necessary to accommodate the expansion and contraction of,and reducing longitudinal stress in,the rails.The main aim of this study is to present analysis of recent developments in the research and application of BEJs in high-speed railway(HSR)long-span bridges in China,and to propose a performance-based integral design method for BEJs used with REJs,from both theoretical and engineering perspectives.Design/methodology/approach–The study first presents a summary on the application and maintenance of BEJs in HSR long-span bridges in China representing an overview of their state of development.Results of a survey of typical BEJ faults were analyzed,and field testing was conducted on a railway cable-stayed bridge in order to obtain information on the major mechanical characteristics of its BEJ under train load.Based on the above,a performance-based integral design method for BEJs with maximum expansion range 1600 mm(±800 mm),was proposed,covering all stages from overall conceptual design to consideration of detailed structural design issues.The performance of the novel BEJ design thus derived was then verified via theoretical analysis under different scenarios,full-scale model testing,and field testing and commissioning.Findings–Two major types of BEJs,deck-type and through-type,are used in HSR long-span bridges in China.Typical BEJ faults were found to mainly include skewness of steel sleepers at the bridge gap,abnormally large longitudinal frictional resistance,and flexural deformation of the scissor mechanisms.These faults influence BEJ functioning,and thus adversely affect track quality and train running performance at the beam end.Due to their simple and integral structure,deck-type BEJs with expansion range 1200 mm(±600 mm)or less have been favored as a solution offering improved operational conditions,and have emerged as a standard design.However,when the expansion range exceeds the above-mentioned value,special design work becomes necessary.Therefore,based on engineering practice,a performance-based integral design method for BEJs used with REJs was proposed,taking into account four major categories of performance requirements,i.e.,mechanical characteristics,train running quality,durability and insulation performance.Overall BEJ design must mainly consider component strength and the overall stiffness of BEJ;the latter factor in particular has a decisive influence on train running performance at the beam end.Detailed BEJ structural design must stress minimization of the frictional resistance of its sliding surface.The static and dynamic performance of the newlydesigned BEJ with expansion range 1600 mm have been confirmed to be satisfactory,via numerical simulation,full-scale model testing,and field testing and commissioning.Originality/value–This research provides a broad overview of the status of BEJs with large expansion range in HSR long-span bridges in China,along with novel insights into their design. 展开更多
关键词 High-speed railway(HSR) Long-span bridge Bridge expansion joint(BEJ) Integral design Rail expansion joint(REJ) Overall stiffness Longitudinal frictional resistance
在线阅读 下载PDF
Bi-directional interaction of joint shear strength in non-seismically designed corner RC beam-column connections under seismic loading 被引量:1
14
作者 Mohammad Amir Najafgholipour Negin Ahmadi rad Akanshu Sharma 《Earthquake Engineering and Engineering Vibration》 2025年第1期135-153,共19页
Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the informa... Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well. 展开更多
关键词 beam-column joints joint shear failure bidirectional loading interaction curve finite element study
在线阅读 下载PDF
Research on multi-wave joint elastic modulus inversion based on improved quantum particle swarm optimization 被引量:2
15
作者 Peng-Qi Wang Xing-Ye Liu +4 位作者 Qing-Chun Li Yi-Fan Feng Tao Yang Xia-Wan Zhou Xu-Kun He 《Petroleum Science》 2025年第2期670-683,共14页
Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppr... Young's modulus and Poisson's ratio are crucial parameters for reservoir characterization and rock brittleness evaluation.Conventional methods often rely on indirect computation or approximations of the Zoeppritz equations to estimate Young's modulus,which can introduce cumulative errors and reduce the accuracy of inversion results.To address these issues,this paper introduces the analytical solution of the Zoeppritz equation into the inversion process.The equation is re-derived and expressed in terms of Young's modulus,Poisson's ratio,and density.Within the Bayesian framework,we construct an objective function for the joint inversion of PP and PS waves.Traditional gradient-based algorithms often suffer from low precision and the computational complexity.In this study,we address limitations of conventional approaches related to low precision and complicated code by using Circle chaotic mapping,Levy flights,and Gaussian mutation to optimize the quantum particle swarm optimization(QPSO),named improved quantum particle swarm optimization(IQPSO).The IQPSO demonstrates superior global optimization capabilities.We test the proposed inversion method with both synthetic and field data.The test results demonstrate the proposed method's feasibility and effectiveness,indicating an improvement in inversion accuracy over traditional methods. 展开更多
关键词 Young's modulus PP-PS joint inversion Exact Zoeppritz Pre-stack inversion QPSO
原文传递
Inflammation-related collagen fibril destruction contributes to temporomandibular joint disc displacement via nuclear factorkappa B activation 被引量:1
16
作者 Shengjie Cui Yanning Guo +8 位作者 Yu Fu Ting Zhang Jieni Zhang Yehua Gan Yanheng Zhou Yan Gu Eileen Gentleman Yan Liu Xuedong Wang 《International Journal of Oral Science》 2025年第2期221-232,共12页
Temporomandibular joint(TMJ)disc displacement is one of the most significant subtypes of temporomandibular joint disorders,but its etiology and mechanism are poorly understood.In this study,we elucidated the mechanism... Temporomandibular joint(TMJ)disc displacement is one of the most significant subtypes of temporomandibular joint disorders,but its etiology and mechanism are poorly understood.In this study,we elucidated the mechanisms by which destruction of inflamed collagen fibrils induces alterations in the mechanical properties and positioning of the TMJ disc.By constructing a rat model of TMJ arthritis,we observed anteriorly dislocated TMJ discs with aggravated deformity in vivo from five weeks to six months after a local injection of Freund’s complete adjuvant.By mimicking inflammatory conditions with interleukin-1 beta in vitro,we observed enhanced expression of collagen-synthesis markers in primary TMJ disc cells cultured in a conventional two-dimensional environment.In contrast,three-dimensional(3D)-cultivated disc cell sheets demonstrated the disordered assembly of inflamed collagen fibrils,inappropriate arrangement,and decreased Young’s modulus.Mechanistically,inflammation-related activation of the nuclear factor kappa-B(NF-κB)pathway occurs during the progression of TMJ arthritis.NF-κB inhibition reduced the collagen fibril destruction in the inflamed disc cell sheets in vitro,and early NF-κB blockade alleviated collagen degeneration and dislocation of the TMJ discs in vivo.Therefore,the NF-κB pathway participates in the collagen remodeling in inflamed TMJ discs,offering a potential therapeutic target for disc displacement. 展开更多
关键词 temporomandibular joint disc displacement destruction inflamed collagen fibrils rat model anteriorly dislocated tmj discs collagen fibril destruction temporomandibular joint INFLAMMATION arthritis
暂未订购
Rock Joint Detection from Borehole Imaging Logs Using a Convolutional Neural Networks Model 被引量:1
17
作者 Yunfeng Ge Geng Liu +2 位作者 Haiyan Wang Huiming Tang Binbin Zhao 《Journal of Earth Science》 2025年第4期1700-1716,共17页
To map the rock joints in the underground rock mass,a method was proposed to semiautomatically detect the rock joints from borehole imaging logs using a deep learning algorithm.First,450 images containing rock joints ... To map the rock joints in the underground rock mass,a method was proposed to semiautomatically detect the rock joints from borehole imaging logs using a deep learning algorithm.First,450 images containing rock joints were selected from borehole ZKZ01 in the Rumei hydropower station.These images were labeled to establish ground truth which was subdivided into training,validation,and testing data.Second,the YOLO v2 model with optimal parameter settings was constructed.Third,the training and validation data were used for model training,while the test data was used to generate the precision-recall curve for prediction evaluation.Fourth,the trained model was applied to a new borehole ZKZ02 to verify the feasibility of the model.There were 12 rock joints detected from the selected images in borehole ZKZ02 and four geometric parameters for each rock joint were determined by sinusoidal curve fitting.The average precision of the trained model reached 0.87. 展开更多
关键词 rock joints automated detection borehole imaging deep learning YOLO model
原文传递
Hydraulic fracturing-based analytical method for determining seepage characteristics at tunnel-gasketed joints 被引量:1
18
作者 GONG Chen-jie CHENG Ming-jin +2 位作者 FAN Xuan PENG Yi-cheng DING Wen-qi 《Journal of Central South University》 2025年第4期1520-1534,共15页
Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fract... Waterproof performance of gaskets between segments is the focus of shield tunnels.This paper proposed an analytical method for determining seepage characteristics at tunnel-gasketed joints based on the hydraulic fracturing theories.First,the mathematical model was established,and the seepage governing equation and boundary conditions were obtained.Second,three dimensionless parameters were introduced for simplifying the expressions,and the seepage governing equations were normalized.Third,analytical expressions were derived for the interface opening and liquid pressure.Moreover,the influencing factors of seepage process at the gasketed interface were analyzed.Parametric analyses revealed that,in the normalized criterion of liquid viscosity,the liquid tip coordinate was influenced by the degree of negative pressure in the liquid lag region,which was related to the initial contact stress.The coordinate of the liquid tip affected the liquid pressure distribution and the interface opening,which were analyzed under different liquid tip coordinate conditions.Finally,under two limit states,comparative analysis showed that the results of the variation trend of the proposed method agree well with those of previous research.Overall,the proposed analytical method provides a novel solution for the design of the waterproof in shield tunnels. 展开更多
关键词 shield tunnels segment joints seepage characteristics hydraulic fracture analytical solution
在线阅读 下载PDF
Microstructure characteristics and corrosion behavior of metal inert gas welded dissimilar joints of 6005A modified by Sc and 5083 alloys 被引量:1
19
作者 Guo-fu XU Liang LIU +7 位作者 Ying DENG Yu ZENG Jun-chang CAO Lei TANG Xiao-yan PENG Jia-qi DUAN Mei-chan LIANG Qing-lin PAN 《Transactions of Nonferrous Metals Society of China》 2025年第1期60-76,共17页
The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion... The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density. 展开更多
关键词 metal inert gas welding dissimilar joint aluminum alloy corrosion microstructure
在线阅读 下载PDF
Shear behaviors of intermittent joints subjected to shearing cycles under constant normal stiffness conditions:Effects of loading parameters 被引量:1
20
作者 Bin Wang Yujing Jiang +1 位作者 Qiangyong Zhang Hongbin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2695-2712,共18页
A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that th... A conceptual model of intermittent joints is introduced to the cyclic shear test in the laboratory to explore the effects of loading parameters on its shear behavior under cyclic shear loading.The results show that the loading parameters(initial normal stress,normal stiffness,and shear velocity)determine propagation paths of the wing and secondary cracks in rock bridges during the initial shear cycle,creating different morphologies of macroscopic step-path rupture surfaces and asperities on them.The differences in stress state and rupture surface induce different cyclic shear responses.It shows that high initial normal stress accelerates asperity degradation,raises shear resistance,and promotes compression of intermittent joints.In addition,high normal stiffness provides higher normal stress and shear resistance during the initial cycles and inhibits the dilation and compression of intermittent joints.High shear velocity results in a higher shear resistance,greater dilation,and greater compression.Finally,shear strength is most sensitive to initial normal stress,followed by shear velocity and normal stiffness.Moreover,average dilation angle is most sensitive to initial normal stress,followed by normal stiffness and shear velocity.During the shear cycles,frictional coefficient is affected by asperity degradation,backfilling of rock debris,and frictional area,exhibiting a non-monotonic behavior. 展开更多
关键词 Intermittent joint Cyclic shear Loading parameter Constant normal stiffness(CNS)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部