The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analys...The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.展开更多
With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist i...With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.展开更多
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su...Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant...Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.展开更多
Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are ...Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.展开更多
The China Spallation Neutron Source(CSNS)is the fourth pulsed accelerator-driven neutron source in the world,and it achieved its design target of 100 kW in 2020.The planned China Spallation Neutron Source Phase II(CSN...The China Spallation Neutron Source(CSNS)is the fourth pulsed accelerator-driven neutron source in the world,and it achieved its design target of 100 kW in 2020.The planned China Spallation Neutron Source Phase II(CSNS-II)commenced in 2024.The CSNS-II linac design primarily involves the addition of a radio-frequency ion source and a section of a superconducting linear accelerator composed of two types of superconducting cavities,namely double-spoke and six-cell elliptical cavities,after the drift tube linac(DTL).The development of the double-spoke superconducting cavity began in early 2021,and by January 2023,the welding,post-processing,and vertical tests of two 324 MHz double-spoke cavity prototypes were completed,with vertical test gradients of 11.6 and 15 MV/m,and Q_(0)≥3×10^(10)@E_(acc)≤10 MV/m.The R&D of the cryomodule began in January 2022.In October 2023,the clean assembly of the double-spoke cavity string and cold mass installation of the cryomodule commenced,with the installation of the cryomodule and valve box completing in two months.In January 2024,a horizontal test of the cryomodule was completed,making it the first double-spoke cavity cryomodule in China.The test results showed that the maximum gradients of the two superconducting cavities at a pulse width of 4 ms and repetition frequency of 25 Hz were 12.8 and 15.2 MV/m,respectively.This article provides a detailed introduction to the double-spoke superconducting cavity,tuner,coupler,and cryomodule,elaborates on the clean assembly of the cavity string and cold mass installation of the cryomodule,and provides a detailed analysis of the horizontal test results.展开更多
In recent years,the application scenarios of electrical and electronic products have become increasingly diverse worldwide.The impact of climatic environmental tests on the performance of related products has attracte...In recent years,the application scenarios of electrical and electronic products have become increasingly diverse worldwide.The impact of climatic environmental tests on the performance of related products has attracted much attention,and formulating scientific and reasonable environmental test plans has become an important step to ensure product quality and reliability.展开更多
Soil salinization is a major abiotic stress that hampers plant development and significantly reduces agricultural productivity,posing a serious challenge to global food security.Akebia trifoliata(Thunb.)Koidz,a specie...Soil salinization is a major abiotic stress that hampers plant development and significantly reduces agricultural productivity,posing a serious challenge to global food security.Akebia trifoliata(Thunb.)Koidz,a species within the genus Akebia Decne.,is valued for its use in food,traditionalmedicine,oil production,and as an ornamental plant.Curcumin,widely recognized for its pharmacological properties including anti-cancer,anti-neuroinflammatory,and anti-fibrotic effects,has recently drawn interest for its potential roles in plant stress responses.However,its impact on plant tolerance to saline-alkali stress remains poorly understood.In this study,the effects of curcumin on saline-alkali resistance in A.trifoliata were examined by subjecting plants to a saline-alkali solution containing 150 mmol/L sodium ions(a mixture of Na_(2)SO_(4),Na_(2)CO_(3),and NaHCO_(3)).Curcumin treatment under these stress conditions leads to anatomical improvements in leaf structure.Furthermore,A.trifoliatamaintained a favorable Na^(+)/K^(+)ratio through increased potassium uptake and reduced sodium accumulation.Biochemical analysis revealed elevated levels of proline,soluble sugars,and soluble proteins,along with improved activities of antioxidant enzymes such as superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD).Similarly,the concentrations of hydrogen peroxide(H_(2)O_(2))and malondialdehyde(MDA)were significantly reduced.Transcriptome analysis under saline-alkali stress conditions showed that curcumin influenced seven keymetabolic pathways annotated in the Kyoto Encyclopedia of Genes and Genomes(KEGG)database,with differentially expressed unigenes primarily enriched in transcription factor families such as MYB,AP2/ERF,NAC,bHLH,and C2C2.Moreover,eight differentially expressed genes(DEGs)associated with plant hormone signal transduction were linked to the auxin and brassinosteroid pathways,critical for cell elongation and plant growth.These findings indicate that curcumin increases saline-alkali stress tolerance in A.trifoliata by modulating physiological,biochemical,and transcriptional responses,ultimately supporting improved growth under adverse conditions.展开更多
In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh enviro...In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.展开更多
This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of fun...This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of functional modules,signal processing modules,and data analysis modules,and covers aspects such as the application of machine learning algorithms and the establishment of fault waveform databases.Finally,it looks forward to the development of intelligent testing systems and emphasizes the importance of building a standardized testing system.展开更多
With the rapid development and commercialization of wireless communications,the execution of OTA testing requires a tremendous amount of test time.Therefore,test time reduction is of great significance.The objective o...With the rapid development and commercialization of wireless communications,the execution of OTA testing requires a tremendous amount of test time.Therefore,test time reduction is of great significance.The objective of this article is to determine optimal measurement grids for SISO OTA testing of 5G Sub-6 GHz user equipments(UEs)in anechoic chamber with satisfactory accuracy and efficiency.The effect of different grid configurations on OTA performance is analyzed quantitatively using reference radiation patterns at different bands.These patterns are utilized to mimic the worst-case radiation patterns of 5G Sub-6 GHz UEs.Subsequently,the associated measurement uncertainty(MU)terms are quantitatively analyzed and determined based on statistical analysis.According to the comparison of calculated MUs,reduction of grid points from currentlyrequired 62(30/30,Δθ/Δϕ)to 26(45/45)could achieve roughly 60%test time reduction for Sub-6 GHz,while still maintaining an uncertainty level of≤0.25 dB.These values can be further reduced to 14(60/60)with 80%reduction for Sub-3 GHz.More importantly,the recommended grid configurations in this research are applicable to both TIS and TRP testing.展开更多
The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo ext...The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo extensive in-house tests and prolonged field tests for certification and approval before operational deployment,leading to high costs,delays,and operational disruptions.This paper introduces a GNSS-based train control localization framework which eliminates the need for on-site testing by leveraging train movement dynamics and 3D environment modeling to create a zero on-site testing platform.The proposed framework simulates train movement and the surrounding 3D environment using collected railway line location data and environmental attributes to generate realistic multipath signals and obscuration effects.This approach enables comprehensive laboratory-based case studies for train localization,reducing the huge amount test of needed for physical field trials.The framework is established in house,using the data collected at the Test Base of China Academy of Railway Sciences(Circular Railway).Results from the open area and cutting environment tests demonstrate high localization accuracy repeatability within the simulated environment,validating the feasibility and effectiveness of zero on-site testing for GNSS-based train control systems.This research highlights the potential of GNSS simulation platforms in enhancing cost efficiency,operational safety,and accuracy for future digital railways.展开更多
In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for peo...In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for people’s production and life,require high attention from industry insiders in terms of their energy efficiency testing.Relying on energy efficiency testing can achieve the goal of energy conservation and emission reduction,and related quality control technologies will also inject new momentum into the green development of the industry.This article will discuss the practical strategies of quality control technology for energy efficiency testing of electronic and electrical products based on the significance of such testing,hoping to provide some help.展开更多
Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer.Several established biomarkers have been widely int...Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer.Several established biomarkers have been widely integrated into routine clinical diagnostics of gastric cancer to guide personalized treatment.Human epidermal growth factor receptor 2(HER2)was the first molecular biomarker to be used in gastric cancer with trastuzumab being the first approved targeted therapy for HER2-positive gastric cancer.Programmed death-ligand 1 positivity and microsatellite instability can guide the use of immunotherapies,such as pembrolizumab and nivolumab.More recently,zolbetuximab has been approved for patients with claudin 18.2-positive diseases in some countries.More targeted therapies,including savolitinib for MET-positive patients,are currently under clinical investigation.However,the clinical application of these diagnostic approaches could be hampered by many existing challenges,including invasive and costly sampling methods,variability in immunohistochemistry interpretation,high costs and long turnaround times for next-generation sequencing,the absence of standardized and clinically validated diagnostic cut-off values for some biomarkers,and tumor heterogeneity.Novel testing and analysis techniques,such as artificial intelligence-assisted image analysis and multiplex immunohistochemistry,and emerging therapeutic strategies,including combination therapies that integrate immune checkpoint inhibitors with targeted therapies,offer potential solutions to some of these challenges.This article reviews recent progress in gastric cancer testing,outlines current challenges,and explores future directions for biomarker testing and targeted therapy for gastric cancer.展开更多
This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviat...This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.展开更多
The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail ...The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail inspection methods,specifically involving real-time,precise detection,and assessment of rail defects.Current applications fail to address the evolving requirements,prompting the need for advancements.This paper provides a summary of various types of rail defects and outlines both traditional and innovative non-destructive inspection techniques,examining their fundamental features,benefits,drawbacks,and practical suitability for railway track inspection.It also explores potential enhancements to equipment and software.The comprehensive review draws upon pertinent international research and review papers.Furthermore,the paper introduces a fusion of inspection methods aimed at enhancing the overall reliability of defect detection.展开更多
Accurate macaque paternity identification is of great significance in various fields,yet relevant research remains scarce.Our study aimed to screen effective microsatellite markers for macaque paternity testing.Initia...Accurate macaque paternity identification is of great significance in various fields,yet relevant research remains scarce.Our study aimed to screen effective microsatellite markers for macaque paternity testing.Initially,300 microsatellite markers were randomly selected from the genome of the crab-eating macaque(Macaca fascicularis),and 12 highly polymorphic tetra-nucleotide repeat markers were identified.These markers'genetic parameters and exclusion probabilities in both crab-eating and rhesus macaque(Macaca mulatta)populations were calculated,meeting the paternity testing requirements for both species.To validate the markers,16 crab-eating macaque and 10 rhesus macaque families with known pedigrees were randomly chosen for testing.The genotypes of the 12 markers in the macaques'offspring could be traced back to their parents,confirming the accuracy and applicability of the marker combination for paternity identification in both macaque species.展开更多
The accurate characterization of anisotropy for additively manufactured materials is of vital importance for both highperformance structural design and printing processing optimization.To avoid the repetitive and redu...The accurate characterization of anisotropy for additively manufactured materials is of vital importance for both highperformance structural design and printing processing optimization.To avoid the repetitive and redundant tensile testing on specimens prepared along diverse directions,this study proposes an instrumented indentation-based inverse identification method for the efficient characterization of additively manufactured materials.In the present work,a 3D finite element model of indentation test is first established for the printed material,for which an anisotropic material constitutive model is incorporated.We have demonstrated that the indentation responses are information-rich,and material anisotropy along different directions can be interpreted by a single indentation imprint.Subsequently,an inverse identification framework is built,in which an Euclidean error norm between simulated and experimental indentation responses is minimized via optimization algorithms such as the Globally Convergent Method of Moving Asymptotes(GCMMA).The developed method has been verified on diverse printed materials referring to either the indentation curve or the residual imprint,and the superiority of this latter over the former is confirmed by a better and faster convergence of inverse identification.Experimental validations on 3D printed materials(including stainless steel 316L,aluminum alloy AlSi10Mg,and titanium alloy TC4)reveal that the developed method is both accurate and reliable when compared with material constitutive behaviors obtained from uni-axial tensile tests,regardless of the degree of anisotropy among different materials.展开更多
In heavy-duty long-distance transmission scenarios,steel wire ropes are widely used due to their unique advantages,and their safety is very important,which has also led to the rapid development of non-destructive test...In heavy-duty long-distance transmission scenarios,steel wire ropes are widely used due to their unique advantages,and their safety is very important,which has also led to the rapid development of non-destructive testing technology for steel wire ropes.The non-destructive testing technology for steel wire ropes is influenced by various factors such as its own structure and external working environment,and the testing process is relatively complex.Multiple testing methods and related types of sensors have also emerged.The electromagnetic detection method is currently the most effective method,but it also has its limitations in development and has not yet fully achieved the expected detection goals.In order to completely replace manual inspection work with the development of non-destructive testing technology for steel wire ropes,more in-depth research and long-term accumulation are still needed.展开更多
文摘The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.
基金supported by the“National Ocean Technology Center Innovation Fund”under Project No.N3220Z002,led by Ning Jia.The official website of the National Ocean Technology Center is accessible at:http://www.notcsoa.org.cn/.
文摘With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.42225206)National Natural Science Foundation of China(42207180,42477209,42302320).
文摘Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
文摘Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.
基金support of this project through the Southwest Regional Partnership on Carbon Sequestration(Grant No.DE-FC26-05NT42591)Improving Production in the Emerging Paradox Oil Play(Grant No.DE-FE0031775).
文摘Geomechanical properties of rocks vary across different measurement scales,primarily due to heterogeneity.Micro-scale geomechanical tests,including micro-scale“scratch tests”and nano-scale nanoindentation tests,are attractive at different scales.Each method requires minimal sample volume,is low cost,and includes a relatively rapid measurement turnaround time.However,recent micro-scale test results–including scratch test results and nanoindentation results–exhibit tangible variance and uncertainty,suggesting a need to correlate mineral composition mapping to elastic modulus mapping to isolate the relative impact of specific minerals.Different research labs often utilize different interpretation methods,and it is clear that future micro-mechanical tests may benefit from standardized testing and interpretation procedures.The objectives of this study are to seek options for standardized testing and interpretation procedures,through two specific objectives:(1)Quantify chemical and physical controls on micro-mechanical properties and(2)Quantify the source of uncertainties associated with nanoindentation measurements.To reach these goals,we conducted mechanical tests on three different scales:triaxial compression tests,scratch tests,and nanoindentation tests.We found that mineral phase weight percentage is highly correlated with nanoindentation elastic modulus distribution.Finally,we conclude that nanoindentation testing is a mineralogy and microstructure-based method and generally yields significant uncertainty and overestimation.The uncertainty of the testing method is largely associated with not mapping pore space a priori.Lastly,the uncertainty can be reduced by combining phase mapping and modulus mapping with substantial and random data sampling.
文摘The China Spallation Neutron Source(CSNS)is the fourth pulsed accelerator-driven neutron source in the world,and it achieved its design target of 100 kW in 2020.The planned China Spallation Neutron Source Phase II(CSNS-II)commenced in 2024.The CSNS-II linac design primarily involves the addition of a radio-frequency ion source and a section of a superconducting linear accelerator composed of two types of superconducting cavities,namely double-spoke and six-cell elliptical cavities,after the drift tube linac(DTL).The development of the double-spoke superconducting cavity began in early 2021,and by January 2023,the welding,post-processing,and vertical tests of two 324 MHz double-spoke cavity prototypes were completed,with vertical test gradients of 11.6 and 15 MV/m,and Q_(0)≥3×10^(10)@E_(acc)≤10 MV/m.The R&D of the cryomodule began in January 2022.In October 2023,the clean assembly of the double-spoke cavity string and cold mass installation of the cryomodule commenced,with the installation of the cryomodule and valve box completing in two months.In January 2024,a horizontal test of the cryomodule was completed,making it the first double-spoke cavity cryomodule in China.The test results showed that the maximum gradients of the two superconducting cavities at a pulse width of 4 ms and repetition frequency of 25 Hz were 12.8 and 15.2 MV/m,respectively.This article provides a detailed introduction to the double-spoke superconducting cavity,tuner,coupler,and cryomodule,elaborates on the clean assembly of the cavity string and cold mass installation of the cryomodule,and provides a detailed analysis of the horizontal test results.
文摘In recent years,the application scenarios of electrical and electronic products have become increasingly diverse worldwide.The impact of climatic environmental tests on the performance of related products has attracted much attention,and formulating scientific and reasonable environmental test plans has become an important step to ensure product quality and reliability.
基金supported by the National Natural Science Foundation of China(Number:32060645)The Joint Special Project(Key Project)of Yunnan Province Local Undergraduate University(202101BA070001-036)+2 种基金The Joint Special Project(Surface Project)of Yunnan Province Local Undergraduate University(202101BA070001-172)the Science Research Fund Project for Education Department of Yunnan Province(Numbers:2023Y0876,2023Y0860,2023J0828)the Basic Research Special Project for Science and Technology Department of Yunnan Provincial(Number:202301AU070137).
文摘Soil salinization is a major abiotic stress that hampers plant development and significantly reduces agricultural productivity,posing a serious challenge to global food security.Akebia trifoliata(Thunb.)Koidz,a species within the genus Akebia Decne.,is valued for its use in food,traditionalmedicine,oil production,and as an ornamental plant.Curcumin,widely recognized for its pharmacological properties including anti-cancer,anti-neuroinflammatory,and anti-fibrotic effects,has recently drawn interest for its potential roles in plant stress responses.However,its impact on plant tolerance to saline-alkali stress remains poorly understood.In this study,the effects of curcumin on saline-alkali resistance in A.trifoliata were examined by subjecting plants to a saline-alkali solution containing 150 mmol/L sodium ions(a mixture of Na_(2)SO_(4),Na_(2)CO_(3),and NaHCO_(3)).Curcumin treatment under these stress conditions leads to anatomical improvements in leaf structure.Furthermore,A.trifoliatamaintained a favorable Na^(+)/K^(+)ratio through increased potassium uptake and reduced sodium accumulation.Biochemical analysis revealed elevated levels of proline,soluble sugars,and soluble proteins,along with improved activities of antioxidant enzymes such as superoxide dismutase(SOD),catalase(CAT),and peroxidase(POD).Similarly,the concentrations of hydrogen peroxide(H_(2)O_(2))and malondialdehyde(MDA)were significantly reduced.Transcriptome analysis under saline-alkali stress conditions showed that curcumin influenced seven keymetabolic pathways annotated in the Kyoto Encyclopedia of Genes and Genomes(KEGG)database,with differentially expressed unigenes primarily enriched in transcription factor families such as MYB,AP2/ERF,NAC,bHLH,and C2C2.Moreover,eight differentially expressed genes(DEGs)associated with plant hormone signal transduction were linked to the auxin and brassinosteroid pathways,critical for cell elongation and plant growth.These findings indicate that curcumin increases saline-alkali stress tolerance in A.trifoliata by modulating physiological,biochemical,and transcriptional responses,ultimately supporting improved growth under adverse conditions.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0608100)the National Natural Science Foundation of China(62332017,U22A2022)
文摘In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.
文摘This article introduces the composition and working principle of home appliance control board automation testing equipment,elaborates on the importance of key technical indicators,explains the integrated design of functional modules,signal processing modules,and data analysis modules,and covers aspects such as the application of machine learning algorithms and the establishment of fault waveform databases.Finally,it looks forward to the development of intelligent testing systems and emphasizes the importance of building a standardized testing system.
基金supported by the Beijing Natural Science Foundation under Grant L253002.
文摘With the rapid development and commercialization of wireless communications,the execution of OTA testing requires a tremendous amount of test time.Therefore,test time reduction is of great significance.The objective of this article is to determine optimal measurement grids for SISO OTA testing of 5G Sub-6 GHz user equipments(UEs)in anechoic chamber with satisfactory accuracy and efficiency.The effect of different grid configurations on OTA performance is analyzed quantitatively using reference radiation patterns at different bands.These patterns are utilized to mimic the worst-case radiation patterns of 5G Sub-6 GHz UEs.Subsequently,the associated measurement uncertainty(MU)terms are quantitatively analyzed and determined based on statistical analysis.According to the comparison of calculated MUs,reduction of grid points from currentlyrequired 62(30/30,Δθ/Δϕ)to 26(45/45)could achieve roughly 60%test time reduction for Sub-6 GHz,while still maintaining an uncertainty level of≤0.25 dB.These values can be further reduced to 14(60/60)with 80%reduction for Sub-3 GHz.More importantly,the recommended grid configurations in this research are applicable to both TIS and TRP testing.
基金supported by the National Natural Science Foundation of China(62027809,U2268206,T2222015,U2468202).
文摘The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo extensive in-house tests and prolonged field tests for certification and approval before operational deployment,leading to high costs,delays,and operational disruptions.This paper introduces a GNSS-based train control localization framework which eliminates the need for on-site testing by leveraging train movement dynamics and 3D environment modeling to create a zero on-site testing platform.The proposed framework simulates train movement and the surrounding 3D environment using collected railway line location data and environmental attributes to generate realistic multipath signals and obscuration effects.This approach enables comprehensive laboratory-based case studies for train localization,reducing the huge amount test of needed for physical field trials.The framework is established in house,using the data collected at the Test Base of China Academy of Railway Sciences(Circular Railway).Results from the open area and cutting environment tests demonstrate high localization accuracy repeatability within the simulated environment,validating the feasibility and effectiveness of zero on-site testing for GNSS-based train control systems.This research highlights the potential of GNSS simulation platforms in enhancing cost efficiency,operational safety,and accuracy for future digital railways.
文摘In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for people’s production and life,require high attention from industry insiders in terms of their energy efficiency testing.Relying on energy efficiency testing can achieve the goal of energy conservation and emission reduction,and related quality control technologies will also inject new momentum into the green development of the industry.This article will discuss the practical strategies of quality control technology for energy efficiency testing of electronic and electrical products based on the significance of such testing,hoping to provide some help.
基金support by grants from Capital’s Funds for Health Improvement and Research(Grant No.2024-2-1024)Beijing Natural Science Foundation(Grant No.7232018).
文摘Advances in the identification of molecular biomarkers and the development of targeted therapies have enhanced the prognosis of patients with advanced gastric cancer.Several established biomarkers have been widely integrated into routine clinical diagnostics of gastric cancer to guide personalized treatment.Human epidermal growth factor receptor 2(HER2)was the first molecular biomarker to be used in gastric cancer with trastuzumab being the first approved targeted therapy for HER2-positive gastric cancer.Programmed death-ligand 1 positivity and microsatellite instability can guide the use of immunotherapies,such as pembrolizumab and nivolumab.More recently,zolbetuximab has been approved for patients with claudin 18.2-positive diseases in some countries.More targeted therapies,including savolitinib for MET-positive patients,are currently under clinical investigation.However,the clinical application of these diagnostic approaches could be hampered by many existing challenges,including invasive and costly sampling methods,variability in immunohistochemistry interpretation,high costs and long turnaround times for next-generation sequencing,the absence of standardized and clinically validated diagnostic cut-off values for some biomarkers,and tumor heterogeneity.Novel testing and analysis techniques,such as artificial intelligence-assisted image analysis and multiplex immunohistochemistry,and emerging therapeutic strategies,including combination therapies that integrate immune checkpoint inhibitors with targeted therapies,offer potential solutions to some of these challenges.This article reviews recent progress in gastric cancer testing,outlines current challenges,and explores future directions for biomarker testing and targeted therapy for gastric cancer.
文摘This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.
文摘The rapid progress in the construction of heavy-haul and high-speed railways has led to a surge in rail defects and unforeseen failures.Addressing this issue necessitates the implementation of more sophisticated rail inspection methods,specifically involving real-time,precise detection,and assessment of rail defects.Current applications fail to address the evolving requirements,prompting the need for advancements.This paper provides a summary of various types of rail defects and outlines both traditional and innovative non-destructive inspection techniques,examining their fundamental features,benefits,drawbacks,and practical suitability for railway track inspection.It also explores potential enhancements to equipment and software.The comprehensive review draws upon pertinent international research and review papers.Furthermore,the paper introduces a fusion of inspection methods aimed at enhancing the overall reliability of defect detection.
基金Nanhu Laboratory Self-Initiated Research Project,Grant/Award Number:NSS2023A00001-2。
文摘Accurate macaque paternity identification is of great significance in various fields,yet relevant research remains scarce.Our study aimed to screen effective microsatellite markers for macaque paternity testing.Initially,300 microsatellite markers were randomly selected from the genome of the crab-eating macaque(Macaca fascicularis),and 12 highly polymorphic tetra-nucleotide repeat markers were identified.These markers'genetic parameters and exclusion probabilities in both crab-eating and rhesus macaque(Macaca mulatta)populations were calculated,meeting the paternity testing requirements for both species.To validate the markers,16 crab-eating macaque and 10 rhesus macaque families with known pedigrees were randomly chosen for testing.The genotypes of the 12 markers in the macaques'offspring could be traced back to their parents,confirming the accuracy and applicability of the marker combination for paternity identification in both macaque species.
基金Supported by National Key R&D Program of China(Grant Nos.2022YFB4603101,2022YFB3402200)Key Project of NSFC of China(Grant No.92271205)Sichuan Provincial Science and Technology Program and Fundamental Research Funds for the Central Universities of China(Grant No.D5000230049).
文摘The accurate characterization of anisotropy for additively manufactured materials is of vital importance for both highperformance structural design and printing processing optimization.To avoid the repetitive and redundant tensile testing on specimens prepared along diverse directions,this study proposes an instrumented indentation-based inverse identification method for the efficient characterization of additively manufactured materials.In the present work,a 3D finite element model of indentation test is first established for the printed material,for which an anisotropic material constitutive model is incorporated.We have demonstrated that the indentation responses are information-rich,and material anisotropy along different directions can be interpreted by a single indentation imprint.Subsequently,an inverse identification framework is built,in which an Euclidean error norm between simulated and experimental indentation responses is minimized via optimization algorithms such as the Globally Convergent Method of Moving Asymptotes(GCMMA).The developed method has been verified on diverse printed materials referring to either the indentation curve or the residual imprint,and the superiority of this latter over the former is confirmed by a better and faster convergence of inverse identification.Experimental validations on 3D printed materials(including stainless steel 316L,aluminum alloy AlSi10Mg,and titanium alloy TC4)reveal that the developed method is both accurate and reliable when compared with material constitutive behaviors obtained from uni-axial tensile tests,regardless of the degree of anisotropy among different materials.
文摘In heavy-duty long-distance transmission scenarios,steel wire ropes are widely used due to their unique advantages,and their safety is very important,which has also led to the rapid development of non-destructive testing technology for steel wire ropes.The non-destructive testing technology for steel wire ropes is influenced by various factors such as its own structure and external working environment,and the testing process is relatively complex.Multiple testing methods and related types of sensors have also emerged.The electromagnetic detection method is currently the most effective method,but it also has its limitations in development and has not yet fully achieved the expected detection goals.In order to completely replace manual inspection work with the development of non-destructive testing technology for steel wire ropes,more in-depth research and long-term accumulation are still needed.