This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviat...This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.展开更多
Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate...Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate the prediction parameters of AR modeling. The complex data samples are directly extrapolated to obtain the extrapolated echo data in the frequency domain. The small rotating angle data extrapolation and the large rotating angular data extrapolation are considered separately in azimuth domain. The method of data extrapolation for the small rotating angle is the same as that in frequency domain, while the amplitude samples of large rotating angle echo data are extrapolated to obtain extrapolated echo amplitude, and the complex data of large rotating angle echo samples are extrapolated to get the extrapolated echo phase respectively. The calculation results show that the extrapolated echo data obtained by the above mentioned methods are accurate.展开更多
针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外...针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外推方法。通过KANN-DBSCAN聚类算法对载荷数据进行分组聚类,采用拇指法求得不同簇间的最优带宽,然后进行核密度估计,再采用蒙特卡洛模拟进行外推。以某电动汽车在用户道路的实测载荷数据为应用对象,对外推方法的合理性进行检验。从统计参数检验量、拟合度检验和伪损伤检验3个指标对外推效果进行评估。结果表明:相比固定带宽的核密度估计外推方法,基于KANN-DBSCSN核密度估计的外推方法获得的外推载荷在统计参数上与实测载荷更为接近,均值、标准差和最大值的误差分别仅为1.9%、 4.3%和1.9%;幅值累计频次曲线拟合度R2均大于0.99,伪损伤均接近1。结果验证了该聚类方法在核密度估计载荷外推的有效性,有助于编制汽车在用户道路上的载荷谱,为具有相似载荷分布特点的机械零部件载荷外推提供了参考。展开更多
文摘This study aimed to examine the performance of the Siegel-Tukey and Savage tests on data sets with heterogeneous variances. The analysis, considering Normal, Platykurtic, and Skewed distributions and a standard deviation ratio of 1, was conducted for both small and large sample sizes. For small sample sizes, two main categories were established: equal and different sample sizes. Analyses were performed using Monte Carlo simulations with 20,000 repetitions for each scenario, and the simulations were evaluated using SAS software. For small sample sizes, the I. type error rate of the Siegel-Tukey test generally ranged from 0.045 to 0.055, while the I. type error rate of the Savage test was observed to range from 0.016 to 0.041. Similar trends were observed for Platykurtic and Skewed distributions. In scenarios with different sample sizes, the Savage test generally exhibited lower I. type error rates. For large sample sizes, two main categories were established: equal and different sample sizes. For large sample sizes, the I. type error rate of the Siegel-Tukey test ranged from 0.047 to 0.052, while the I. type error rate of the Savage test ranged from 0.043 to 0.051. In cases of equal sample sizes, both tests generally had lower error rates, with the Savage test providing more consistent results for large sample sizes. In conclusion, it was determined that the Savage test provides lower I. type error rates for small sample sizes and that both tests have similar error rates for large sample sizes. These findings suggest that the Savage test could be a more reliable option when analyzing variance differences.
文摘Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate the prediction parameters of AR modeling. The complex data samples are directly extrapolated to obtain the extrapolated echo data in the frequency domain. The small rotating angle data extrapolation and the large rotating angular data extrapolation are considered separately in azimuth domain. The method of data extrapolation for the small rotating angle is the same as that in frequency domain, while the amplitude samples of large rotating angle echo data are extrapolated to obtain extrapolated echo amplitude, and the complex data of large rotating angle echo samples are extrapolated to get the extrapolated echo phase respectively. The calculation results show that the extrapolated echo data obtained by the above mentioned methods are accurate.
文摘针对核密度估计载荷外推全局固定带宽的局限性,提出一种基于KANN-DBSCAN(K-average nearest neighbor density-based spatial clustering of applications with noise)改进带宽取值的核密度估计(kernel density estimation, KDE)载荷外推方法。通过KANN-DBSCAN聚类算法对载荷数据进行分组聚类,采用拇指法求得不同簇间的最优带宽,然后进行核密度估计,再采用蒙特卡洛模拟进行外推。以某电动汽车在用户道路的实测载荷数据为应用对象,对外推方法的合理性进行检验。从统计参数检验量、拟合度检验和伪损伤检验3个指标对外推效果进行评估。结果表明:相比固定带宽的核密度估计外推方法,基于KANN-DBSCSN核密度估计的外推方法获得的外推载荷在统计参数上与实测载荷更为接近,均值、标准差和最大值的误差分别仅为1.9%、 4.3%和1.9%;幅值累计频次曲线拟合度R2均大于0.99,伪损伤均接近1。结果验证了该聚类方法在核密度估计载荷外推的有效性,有助于编制汽车在用户道路上的载荷谱,为具有相似载荷分布特点的机械零部件载荷外推提供了参考。