Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba...Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.展开更多
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e...In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.展开更多
Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factor...Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.展开更多
Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is propose...Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.展开更多
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ...Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.展开更多
A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the enco...A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.展开更多
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ...For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.展开更多
A novel framework is proposed to obtain physiologically meaningful features for Alzheimer's disease(AD)classification based on sparse functional connectivity and non-negative matrix factorization.Specifically,the ...A novel framework is proposed to obtain physiologically meaningful features for Alzheimer's disease(AD)classification based on sparse functional connectivity and non-negative matrix factorization.Specifically,the non-negative adaptive sparse representation(NASR)method is applied to compute the sparse functional connectivity among brain regions based on functional magnetic resonance imaging(fMRI)data for feature extraction.Afterwards,the sparse non-negative matrix factorization(sNMF)method is adopted for dimensionality reduction to obtain low-dimensional features with straightforward physical meaning.The experimental results show that the proposed framework outperforms the competing frameworks in terms of classification accuracy,sensitivity and specificity.Furthermore,three sub-networks,including the default mode network,the basal ganglia-thalamus-limbic network and the temporal-insular network,are found to have notable differences between the AD patients and the healthy subjects.The proposed framework can effectively identify AD patients and has potentials for extending the understanding of the pathological changes of AD.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisf...Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.展开更多
Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more...Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more and more attentions have been paid to the object-based audio coding. However, existing object-based techniques have poor sound quality because of low parameter frequency domain resolution. In order to achieve high quality audio object coding, we propose a new coding framework with introducing the non-negative matrix factorization(NMF) method. We extract object parameters with high resolution to improve sound quality, and apply NMF method to parameter coding to reduce the high bitrate caused by high resolution. And the experimental results have shown that the proposed framework can improve the coding quality by 25%, so it can provide a better solution to encode audio scene in a more flexible and higher quality way.展开更多
Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser...Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.展开更多
Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level...Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level features in the signal using the underlying structure of the signal.Recently,an Online Convolutional Sparse Coding(OCSC)denoising algorithm has been proposed.However,it does not consider the structural characteristics of the signal,the sparsity of each iteration is not enough.Therefore,a threshold shrinkage algorithm considering neighborhood sparsity is proposed,and a training strategy from loose to tight is developed to further improve the denoising performance of the algorithm,called Variable Threshold Neighborhood Online Convolution Sparse Coding(VTNOCSC).By embedding the structural sparse threshold shrinkage operator into the process of solving the sparse coefficient and gradually approaching the optimal noise separation point in the training,the signal denoising performance of the algorithm is greatly improved.VTNOCSC is used to process the actual bearing fault signal,the noise interference is successfully reduced and the interest features are more evident.Compared with other existing methods,VTNOCSC has better denoising performance.展开更多
Key frame extraction based on sparse coding can reduce the redundancy of continuous frames and concisely express the entire video.However,how to develop a key frame extraction algorithm that can automatically extract ...Key frame extraction based on sparse coding can reduce the redundancy of continuous frames and concisely express the entire video.However,how to develop a key frame extraction algorithm that can automatically extract a few frames with a low reconstruction error remains a challenge.In this paper,we propose a novel model of structured sparse-codingbased key frame extraction,wherein a nonconvex group log-regularizer is used with strong sparsity and a low reconstruction error.To automatically extract key frames,a decomposition scheme is designed to separate the sparse coefficient matrix by rows.The rows enforced by the nonconvex group log-regularizer become zero or nonzero,leading to the learning of the structured sparse coefficient matrix.To solve the nonconvex problems due to the log-regularizer,the difference of convex algorithm(DCA)is employed to decompose the log-regularizer into the difference of two convex functions related to the l1 norm,which can be directly obtained through the proximal operator.Therefore,an efficient structured sparse coding algorithm with the group log-regularizer for key frame extraction is developed,which can automatically extract a few frames directly from the video to represent the entire video with a low reconstruction error.Experimental results demonstrate that the proposed algorithm can extract more accurate key frames from most Sum Me videos compared to the stateof-the-art methods.Furthermore,the proposed algorithm can obtain a higher compression with a nearly 18% increase compared to sparse modeling representation selection(SMRS)and an 8% increase compared to SC-det on the VSUMM dataset.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
Abstract:Sparse coding(SC)based visual tracking(l1-tracker)is gaining increasing attention,and many related algorithms are developed.In these algorithms,each candidate region is sparsely represented as a set of target...Abstract:Sparse coding(SC)based visual tracking(l1-tracker)is gaining increasing attention,and many related algorithms are developed.In these algorithms,each candidate region is sparsely represented as a set of target templates.However,the structure connecting these candidate regions is usually ignored.Lu proposed an NLSSC-tracker with non-local self-similarity sparse coding to address this issue,which has a high computational cost.In this study,we propose an Euclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local structure.With this tracker,the optimization procedure is transformed to a small-scale l1-optimization problem,significantly reducing the computational cost.Extensive experimental results on visual tracking demonstrate the eectiveness and efficiency of the proposed algorithm.展开更多
Image denoising is a well-studied problem closely related to sparse coding. Noticing that the Laplacian distribution has a strong sparseness, we use Laplacian scale mixture to model sparse coefficients. With the obser...Image denoising is a well-studied problem closely related to sparse coding. Noticing that the Laplacian distribution has a strong sparseness, we use Laplacian scale mixture to model sparse coefficients. With the observation that prior information of an image is relevant to the estimation of sparse coefficients, we introduce the prior information into maximum a posteriori(MAP) estimation of sparse coefficients by an appropriate estimate of the probability density function. Extending to structured sparsity, a nonlocal image denoising model: Improved Simultaneous Sparse Coding with Laplacian Scale Mixture(ISSC-LSM) is proposed. The centering preprocessing, which admits biased-mean of sparse coefficients and saves expensive computation, is done firstly. By alternating minimization and learning an orthogonal PCA dictionary, an efficient algorithm with closed-form solutions is proposed. When applied to noise removal, our proposed ISSC-LSM can capture structured image features, and the adoption of image prior information leads to highly competitive denoising performance. Experimental results show that the proposed method often provides higher subjective and objective qualities than other competing approaches. Our method is most suitable for processing images with abundant self-repeating patterns by effectively suppressing undesirable artifacts while maintaining the textures and edges.展开更多
To provide reliability in distributed systems,combination property(CP)is desired,where k original packets are encoded into n≥k packets and arbitrary k are sufficient to reconstruct all the original packets.Shift-and-...To provide reliability in distributed systems,combination property(CP)is desired,where k original packets are encoded into n≥k packets and arbitrary k are sufficient to reconstruct all the original packets.Shift-and-add(SA)encoding combined with zigzag decoding(ZD)obtains the CP-ZD,which is promising to reap low computational complexity in the encoding/decoding process of these systems.As densely coded modulation is difficult to achieve CP-ZD,research attentions are paid to sparse coded modulation.The drawback of existing sparse CP-ZD coded modulation lies in high overhead,especially in widely deployed setting m<k,where m≜n−k.For this scenario,namely,m<k,a sparse reverseorder shift(Rev-Shift)CP-ZD coded modulation is designed.The proof that Rev-Shift possesses CP-ZD is provided.A lower bound for the overhead,as far as we know is the first for sparse CP-ZD coded modulation,is derived.The bound is found tight in certain scenarios,which shows the code optimality.Extensive numerical studies show that compared to existing sparse CP-ZD coded modulation,the overhead of Rev-Shift reduces significantly,and the derived lower bound is tight when k or m approaches 0.展开更多
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.
文摘In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality.
基金supported by the National Natural Science Foundation of China (61074131 and 91132722)the Doctoral Fund of the Ministry of Education of China (21101202110007)
文摘Working memory plays an important role in human cognition. This study investigated how working memory was encoded by the power of multichannel local field potentials (LFPs) based on sparse non negative matrix factorization (SNMF). SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four SpragueDawley rats during a memory task in a Y maze, with 10 trials for each rat. Then the powerincreased LFP components were selected as working memoryrelated features and the other components were removed. After that, the inverse operation of SNMF was used to study the encoding of working memory in the time frequency domain. We demonstrated that theta and gamma power increased significantly during the working memory task. The results suggested that postsynaptic activity was simulated well by the sparse activity model. The theta and gamma bands were meaningful for encoding working memory.
基金The National Natural Science Foundation of China (No.50875048)the Natural Science Foundation of Jiangsu Province (No.BK2007115)the National High Technology Research and Development Program of China (863 Program)(No.2007AA04Z421)
文摘Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra.
基金supported by the National Natural Science Foundation of China(61801503).
文摘Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
文摘A new method for the construction of the high performance systematic irregular low-density paritycheck (LDPC) codes based on the sparse generator matrix (G-LDPC) is introduced. The code can greatly reduce the encoding complexity while maintaining the same decoding complexity as traditional regular LDPC (H-LDPC) codes defined by the sparse parity check matrix. Simulation results show that the performance of the proposed irregular LDPC codes can offer significant gains over traditional LDPC codes in low SNRs with a few decoding iterations over an additive white Gaussian noise (AWGN) channel.
基金Project supported by the National Natural Science Foundation of China(Grant No.60972046)Grant from the National Defense Pre-Research Foundation of China
文摘For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.
基金The Foundation of Hygiene and Health of Jiangsu Province(No.H2018042)the National Natural Science Foundation of China(No.61773114)the Key Research and Development Plan(Industry Foresight and Common Key Technology)of Jiangsu Province(No.BE2017007-3)
文摘A novel framework is proposed to obtain physiologically meaningful features for Alzheimer's disease(AD)classification based on sparse functional connectivity and non-negative matrix factorization.Specifically,the non-negative adaptive sparse representation(NASR)method is applied to compute the sparse functional connectivity among brain regions based on functional magnetic resonance imaging(fMRI)data for feature extraction.Afterwards,the sparse non-negative matrix factorization(sNMF)method is adopted for dimensionality reduction to obtain low-dimensional features with straightforward physical meaning.The experimental results show that the proposed framework outperforms the competing frameworks in terms of classification accuracy,sensitivity and specificity.Furthermore,three sub-networks,including the default mode network,the basal ganglia-thalamus-limbic network and the temporal-insular network,are found to have notable differences between the AD patients and the healthy subjects.The proposed framework can effectively identify AD patients and has potentials for extending the understanding of the pathological changes of AD.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金supported by the National Natural Science Foundation of China (No. 51201182)
文摘Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.
基金supported by National High Technology Research and Development Program of China (863 Program) (No.2015AA016306)National Nature Science Foundation of China (No.61231015)National Nature Science Foundation of China (No.61671335)
文摘Object-based audio coding is the main technique of audio scene coding. It can effectively reconstruct each object trajectory, besides provide sufficient flexibility for personalized audio scene reconstruction. So more and more attentions have been paid to the object-based audio coding. However, existing object-based techniques have poor sound quality because of low parameter frequency domain resolution. In order to achieve high quality audio object coding, we propose a new coding framework with introducing the non-negative matrix factorization(NMF) method. We extract object parameters with high resolution to improve sound quality, and apply NMF method to parameter coding to reduce the high bitrate caused by high resolution. And the experimental results have shown that the proposed framework can improve the coding quality by 25%, so it can provide a better solution to encode audio scene in a more flexible and higher quality way.
基金supported in part by National Natural Science Foundation of China (no. 61571373, no. 61501383, no. U1734209, no. U1709219)in part by Key International Cooperation Project of Sichuan Province (no. 2017HH0002)+2 种基金in part by Marie Curie Fellowship (no. 792406)in part by the National Science and Technology Major Project under Grant 2016ZX03001018-002in part by NSFC China-Swedish project (no. 6161101297)
文摘Polar coded sparse code multiple access(SCMA) system is conceived in this paper. A simple but new iterative multiuser detection framework is proposed, which consists of a message passing algorithm(MPA) based multiuser detector and a soft-input soft-output(SISO) successive cancellation(SC) polar decoder. In particular, the SISO polar decoding process is realized by a specifically designed soft re-encoder, which is concatenated to the original SC decoder. This soft re-encoder is capable of reconstructing the soft information of the entire polar codeword based on previously detected log-likelihood ratios(LLRs) of information bits. Benefiting from the soft re-encoding algorithm, the resultant iterative detection strategy is able to obtain a salient coding gain. Our simulation results demonstrate that significant improvement in error performance is achieved by the proposed polar-coded SCMA in additive white Gaussian noise(AWGN) channels, where the performance of the conventional SISO belief propagation(BP) polar decoder aided SCMA, the turbo coded SCMA and the low-density parity-check(LDPC) coded SCMA are employed as benchmarks.
基金supported by the National Key Research and Development Program of China(No.2018YFB2003300)National Science and Technology Major Project,China(No.2017-IV-0008-0045)National Natural Science Foundation of China(No.51675262).
文摘Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level features in the signal using the underlying structure of the signal.Recently,an Online Convolutional Sparse Coding(OCSC)denoising algorithm has been proposed.However,it does not consider the structural characteristics of the signal,the sparsity of each iteration is not enough.Therefore,a threshold shrinkage algorithm considering neighborhood sparsity is proposed,and a training strategy from loose to tight is developed to further improve the denoising performance of the algorithm,called Variable Threshold Neighborhood Online Convolution Sparse Coding(VTNOCSC).By embedding the structural sparse threshold shrinkage operator into the process of solving the sparse coefficient and gradually approaching the optimal noise separation point in the training,the signal denoising performance of the algorithm is greatly improved.VTNOCSC is used to process the actual bearing fault signal,the noise interference is successfully reduced and the interest features are more evident.Compared with other existing methods,VTNOCSC has better denoising performance.
基金supported in part by the National Natural Science Foundation of China(61903090,61727810,62073086,62076077,61803096,U191140003)the Guangzhou Science and Technology Program Project(202002030289)Japan Society for the Promotion of Science(JSPS)KAKENHI(18K18083)。
文摘Key frame extraction based on sparse coding can reduce the redundancy of continuous frames and concisely express the entire video.However,how to develop a key frame extraction algorithm that can automatically extract a few frames with a low reconstruction error remains a challenge.In this paper,we propose a novel model of structured sparse-codingbased key frame extraction,wherein a nonconvex group log-regularizer is used with strong sparsity and a low reconstruction error.To automatically extract key frames,a decomposition scheme is designed to separate the sparse coefficient matrix by rows.The rows enforced by the nonconvex group log-regularizer become zero or nonzero,leading to the learning of the structured sparse coefficient matrix.To solve the nonconvex problems due to the log-regularizer,the difference of convex algorithm(DCA)is employed to decompose the log-regularizer into the difference of two convex functions related to the l1 norm,which can be directly obtained through the proximal operator.Therefore,an efficient structured sparse coding algorithm with the group log-regularizer for key frame extraction is developed,which can automatically extract a few frames directly from the video to represent the entire video with a low reconstruction error.Experimental results demonstrate that the proposed algorithm can extract more accurate key frames from most Sum Me videos compared to the stateof-the-art methods.Furthermore,the proposed algorithm can obtain a higher compression with a nearly 18% increase compared to sparse modeling representation selection(SMRS)and an 8% increase compared to SC-det on the VSUMM dataset.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
基金National Natural Foundation of China under Grant(61572085,61502058)
文摘Abstract:Sparse coding(SC)based visual tracking(l1-tracker)is gaining increasing attention,and many related algorithms are developed.In these algorithms,each candidate region is sparsely represented as a set of target templates.However,the structure connecting these candidate regions is usually ignored.Lu proposed an NLSSC-tracker with non-local self-similarity sparse coding to address this issue,which has a high computational cost.In this study,we propose an Euclidean local-structure constraint based sparse coding tracker with a smoothed Euclidean local structure.With this tracker,the optimization procedure is transformed to a small-scale l1-optimization problem,significantly reducing the computational cost.Extensive experimental results on visual tracking demonstrate the eectiveness and efficiency of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(61573014)
文摘Image denoising is a well-studied problem closely related to sparse coding. Noticing that the Laplacian distribution has a strong sparseness, we use Laplacian scale mixture to model sparse coefficients. With the observation that prior information of an image is relevant to the estimation of sparse coefficients, we introduce the prior information into maximum a posteriori(MAP) estimation of sparse coefficients by an appropriate estimate of the probability density function. Extending to structured sparsity, a nonlocal image denoising model: Improved Simultaneous Sparse Coding with Laplacian Scale Mixture(ISSC-LSM) is proposed. The centering preprocessing, which admits biased-mean of sparse coefficients and saves expensive computation, is done firstly. By alternating minimization and learning an orthogonal PCA dictionary, an efficient algorithm with closed-form solutions is proposed. When applied to noise removal, our proposed ISSC-LSM can capture structured image features, and the adoption of image prior information leads to highly competitive denoising performance. Experimental results show that the proposed method often provides higher subjective and objective qualities than other competing approaches. Our method is most suitable for processing images with abundant self-repeating patterns by effectively suppressing undesirable artifacts while maintaining the textures and edges.
基金Manuscript received February 13, 2016 accepted December 7, 2016. This work was supported by the National Natural Science Foundation of China (61362001, 61661031), Jiangxi Province Innovation Projects for Postgraduate Funds (YC2016-S006), the International Postdoctoral Exchange Fellowship Program, and Jiangxi Advanced Project for Post-Doctoral Research Fund (2014KY02).
基金supported by research grants from Natural Science Foundation of China(62071304)Guangdong Basic and Applied Basic Research Foundation(2020A1515010381,2022A1515011219,20220809155455002)+2 种基金Basic Research foundation of Shenzhen City(20200826152915001,20190808120415286)Natural Science Foundation of Shenzhen University(00002501)Xinjiang Uygur Autonomous Region Natural Science Foundation General Project(2023D01A60).
文摘To provide reliability in distributed systems,combination property(CP)is desired,where k original packets are encoded into n≥k packets and arbitrary k are sufficient to reconstruct all the original packets.Shift-and-add(SA)encoding combined with zigzag decoding(ZD)obtains the CP-ZD,which is promising to reap low computational complexity in the encoding/decoding process of these systems.As densely coded modulation is difficult to achieve CP-ZD,research attentions are paid to sparse coded modulation.The drawback of existing sparse CP-ZD coded modulation lies in high overhead,especially in widely deployed setting m<k,where m≜n−k.For this scenario,namely,m<k,a sparse reverseorder shift(Rev-Shift)CP-ZD coded modulation is designed.The proof that Rev-Shift possesses CP-ZD is provided.A lower bound for the overhead,as far as we know is the first for sparse CP-ZD coded modulation,is derived.The bound is found tight in certain scenarios,which shows the code optimality.Extensive numerical studies show that compared to existing sparse CP-ZD coded modulation,the overhead of Rev-Shift reduces significantly,and the derived lower bound is tight when k or m approaches 0.