In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let ...In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.展开更多
Active disturbance rejection control (ADRC), as proposed by Prof. Jingqing Han, reduces first the plant dynamics to its canonical form, normally in the form of cascade integrators, for which the standard controller ...Active disturbance rejection control (ADRC), as proposed by Prof. Jingqing Han, reduces first the plant dynamics to its canonical form, normally in the form of cascade integrators, for which the standard controller can be employed to meet the design specifications. This paper concerns with the selection of the canonical form for non-minimum phase systems. In particular, it is shown that, by employing the well known controllable canonical form, the uncertainties of such systems can be divided into two terms in the state space model, one in the control channel and the other in the output channel. The necessary and sufficient condition is obtained for the stability of the closed-loop system with the proposed canonical form and ADRC. Also, by showing the necessity of the detectability of the extended system as well as certain information of the system-s "zeros", we present the fundamental guidelines of design ADRC for non-minimum phase uncertain systems.展开更多
For a stochastic non-minimum phase multivariable system,a multiple models direct adaptive controller is presented.It is composed of multiple fixed models with two adaptive models.The fixed models are used to cover the...For a stochastic non-minimum phase multivariable system,a multiple models direct adaptive controller is presented.It is composed of multiple fixed models with two adaptive models.The fixed models are used to cover the region where the system parameters jump and improve the transient response,while another two adaptive models are used to guarantee the stability.Utilizing generalized minimum variance design method,it adopts the stochastic system estimation algorithm with optimal controller design method to identify the controller parameter directly.Finally,the global convergence is given.The simulation proves the effectives of the controller proposed.展开更多
[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau...[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau damping,which is particularly important for storage rings operating with ultra-low emittance or atlow beam energy.[Purpose]To further increase the bunch length without additional hardware costs,the phasemodulation in a dual-RF system is considered.[Methods]In this paper,turn-by-turn simulations incorporating randomsynchrotron radiation excitation are conducted,and a brief analysis is presented to explain the bunch lengtheningmechanism.[Results]Simulation results reveal that the peak current can be further reduced,thereby mitigating IBSeffects and enhancing the Touschek lifetime.Although the energy spread increases,which tends to reduce thebrightness of higher-harmonic radiation from the undulator,the brightness of the fundamental harmonic can,in fact,beimproved.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with pha...Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with phase gradient modulation can be used to achieve illusion optics,featuring the advantages of simple geometric structure and feasible implementation compared with the well-known transformation optics method.The underlying mechanism is the anomalous diffraction law caused by the phase gradient,which provides a theoretical basis for freely manipulating the propagation path of light.By considering a specific example,we will demonstrate that the phase gradient can transform spatial coordinates in real space into illusion space,thereby converting a plane in real space into a curved surface structure in illusion space to achieve the illusion effect.This approach provides a viable alternative to transformation optics for designing illusion devices.展开更多
Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flush...Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flushing,thereby reducing the antifouling capability of LIS.Herein,we reported a thermal-responsive lubricant infused surface(TLIS)based on composite phase change materials(CPCMs),exhibiting durable and efficient anti-scaling performance.During multicycle scalingdescaling test,the anti-scaling efficiencies of TLIS based on paraffin and vaseline can be increased to 91.4%±0.5% for first cycle and 85.3%±3.3% for sixth cycle.The paraffin acts as solid scaffolds for structural stability while the vaseline acts as liquid lubricants for anti-scaling enhancement.The universality of this surface can be revealed by suppressing various scales(e.g.,CaCO_(3),CaSO_(4),CaC_(2)O_(4),and MgCO_(3))and varying CPCMs types(e.g.,n-alkanes,ionic liquids,and fatty acids).Therefore,this study presents a promising strategy that enhances the durability of anti-scaling capability and potentially applys in heat exchange systems.展开更多
Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctio...Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctional layered composite phase change materials(CPCMs)comprising alternating cellulose nanofiber/phase change capsule/sodium alginate(CNF/PCC/SA)layers and MXene/sodium alginate(MXene/SA)layers.The strong interfacial adhesion and controlled multilayer architecture enable the CPCM to achieve high electrical conductivity(up to 279.8 S/cm)and excellent EMI shielding effectiveness(up to 57.6 dB in the X-band).The layered structure enhances electromagnetic wave attenuation via multiple internal reflections and polarization losses,outperforming homogeneous composites.Moreover,the CPCMs exhibit superior light absorption(maximum nearly 100% for the optimized 5-layer structure)and efficient light-to-thermal conversion,achieving rapid temperature increases and uniform heat distribution under light irradiation.Additionally,the phase change capsules enable latent heat storage,ensuring thermal buffering and prolonged temperature regulation.This work provides novel insights into the rational design of multifunctional composites integrating wireless thermal management and EMI shielding,with promising applications in wearable electronics and smart thermal regulation.展开更多
The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behavior...The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys.展开更多
Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the o...Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.展开更多
In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on t...In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm.展开更多
This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-mini...This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.展开更多
This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of un...This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.展开更多
An improved algorithm which is based on the recursive closed-form algorithm fornon-minimum phase FIR system identification via higher order statistics is presented.In order toincrease the parametric estimation accurac...An improved algorithm which is based on the recursive closed-form algorithm fornon-minimum phase FIR system identification via higher order statistics is presented.In order toincrease the parametric estimation accuracy,the improved algorithm uses the optimal iterativemethod to seek the nonlinear least-square solution.Finally,the simulation examples are alsogiven.展开更多
Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challengin...Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat...Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.展开更多
基金supported by National Natural Science Foundation of China(61403013)the Aero-Science Foundation of China(2015ZA51009)
文摘In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.
文摘Active disturbance rejection control (ADRC), as proposed by Prof. Jingqing Han, reduces first the plant dynamics to its canonical form, normally in the form of cascade integrators, for which the standard controller can be employed to meet the design specifications. This paper concerns with the selection of the canonical form for non-minimum phase systems. In particular, it is shown that, by employing the well known controllable canonical form, the uncertainties of such systems can be divided into two terms in the state space model, one in the control channel and the other in the output channel. The necessary and sufficient condition is obtained for the stability of the closed-loop system with the proposed canonical form and ADRC. Also, by showing the necessity of the detectability of the extended system as well as certain information of the system-s "zeros", we present the fundamental guidelines of design ADRC for non-minimum phase uncertain systems.
基金the National Natural Science Foundation of China (Nos.60504010 and 60774015)the National High Technology Research and Development Program (863) of China (No.2008AA04Z129)+1 种基金the Disbursal Budget Program of Shanghai Municipal Education Commission of China (No.2008093) the Innovation Program of Shanghai Municipal Education Commission of China (No.09YZ241)
文摘For a stochastic non-minimum phase multivariable system,a multiple models direct adaptive controller is presented.It is composed of multiple fixed models with two adaptive models.The fixed models are used to cover the region where the system parameters jump and improve the transient response,while another two adaptive models are used to guarantee the stability.Utilizing generalized minimum variance design method,it adopts the stochastic system estimation algorithm with optimal controller design method to identify the controller parameter directly.Finally,the global convergence is given.The simulation proves the effectives of the controller proposed.
基金National Natural Science Foundation of China(12405168)The Fundamental Research Funds for the Central Universities,China(2024CDJXY004)。
文摘[Background]High harmonic cavities are widely used in electron storage rings to lengthen thebunch,lower the bunch peak current,thereby reducing the IBS effect,enhancing the Touschek lifetime,as well asproviding Landau damping,which is particularly important for storage rings operating with ultra-low emittance or atlow beam energy.[Purpose]To further increase the bunch length without additional hardware costs,the phasemodulation in a dual-RF system is considered.[Methods]In this paper,turn-by-turn simulations incorporating randomsynchrotron radiation excitation are conducted,and a brief analysis is presented to explain the bunch lengtheningmechanism.[Results]Simulation results reveal that the peak current can be further reduced,thereby mitigating IBSeffects and enhancing the Touschek lifetime.Although the energy spread increases,which tends to reduce thebrightness of higher-harmonic radiation from the undulator,the brightness of the fundamental harmonic can,in fact,beimproved.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos.12274313 and 62375234)the Gusu Leading Talent Plan for Scientific and Technological Innovation and Entrepreneurship (Grant No.ZXL2024400)。
文摘Optical phase-gradient metasurfaces have garnered significant attention for enabling flexible light manipulation,with applications across diverse domains.In this work,we will demonstrate that the metasurfaces with phase gradient modulation can be used to achieve illusion optics,featuring the advantages of simple geometric structure and feasible implementation compared with the well-known transformation optics method.The underlying mechanism is the anomalous diffraction law caused by the phase gradient,which provides a theoretical basis for freely manipulating the propagation path of light.By considering a specific example,we will demonstrate that the phase gradient can transform spatial coordinates in real space into illusion space,thereby converting a plane in real space into a curved surface structure in illusion space to achieve the illusion effect.This approach provides a viable alternative to transformation optics for designing illusion devices.
基金supported by the Beijing Natural Science Foundation(No.JQ23008)the National Natural Science Foundation of China(Nos.22275203 and 22035008)Beijing Outstanding Young Scientist Program(No.JWZQ20240102014).
文摘Lubricant infused surface(LIS)always displays efficient anti-fouling performance.However,the inherent liquid properties of infused lubricants often lead to their rapid depletion in harsh conditions such as water flushing,thereby reducing the antifouling capability of LIS.Herein,we reported a thermal-responsive lubricant infused surface(TLIS)based on composite phase change materials(CPCMs),exhibiting durable and efficient anti-scaling performance.During multicycle scalingdescaling test,the anti-scaling efficiencies of TLIS based on paraffin and vaseline can be increased to 91.4%±0.5% for first cycle and 85.3%±3.3% for sixth cycle.The paraffin acts as solid scaffolds for structural stability while the vaseline acts as liquid lubricants for anti-scaling enhancement.The universality of this surface can be revealed by suppressing various scales(e.g.,CaCO_(3),CaSO_(4),CaC_(2)O_(4),and MgCO_(3))and varying CPCMs types(e.g.,n-alkanes,ionic liquids,and fatty acids).Therefore,this study presents a promising strategy that enhances the durability of anti-scaling capability and potentially applys in heat exchange systems.
基金the National Natural Science Foundation of China(No.52436003)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011985).
文摘Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctional layered composite phase change materials(CPCMs)comprising alternating cellulose nanofiber/phase change capsule/sodium alginate(CNF/PCC/SA)layers and MXene/sodium alginate(MXene/SA)layers.The strong interfacial adhesion and controlled multilayer architecture enable the CPCM to achieve high electrical conductivity(up to 279.8 S/cm)and excellent EMI shielding effectiveness(up to 57.6 dB in the X-band).The layered structure enhances electromagnetic wave attenuation via multiple internal reflections and polarization losses,outperforming homogeneous composites.Moreover,the CPCMs exhibit superior light absorption(maximum nearly 100% for the optimized 5-layer structure)and efficient light-to-thermal conversion,achieving rapid temperature increases and uniform heat distribution under light irradiation.Additionally,the phase change capsules enable latent heat storage,ensuring thermal buffering and prolonged temperature regulation.This work provides novel insights into the rational design of multifunctional composites integrating wireless thermal management and EMI shielding,with promising applications in wearable electronics and smart thermal regulation.
基金financially supported by the National Key Research and Development Program of China (No. 2019YFA0708801)the National Natural Science Foundation of China (No. 51875125)。
文摘The water-quenched(WQ)2195 Al−Li alloy was subjected to stretching at different temperatures,from room temperature(RT)to−196℃(CT),to investigate the effect of cryogenic deformation on the aging precipitation behaviors and mechanical properties.The precipitation kinetics of the T1 phase and the microstructures in peak aging state were investigated through the differential scanning calorimetric(DSC)tests and electron microscopy observation.The results show that−196℃deformation produces a high dislocation density,which promotes the precipitation of the T1 phase and refines its sizes significantly.In addition,the grain boundary precipitates(GBPs)of−196℃-stretched samples are suppressed considerably due to the high dislocation density in the grain interiors,which increases the ductility.In comparison,the strength remains nearly constant.Thus,it is indicated that cryogenic forming has the potential to provide the shape and property control for the manufacture of critical components of aluminum alloys.
基金supported by the National Natural Science Foundation of China(No.22276219)the foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52121004)+1 种基金the major program Natural Science Foundation of Hunan Province of China(No.2021JC0001)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0063).
文摘Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.
基金supported in part by the Science Center Program of National Natural Science Foundation of China(62373189,62188101,62020106003)the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures,China。
文摘In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm.
基金This work was supported by Research Grants Council of Hong Kong(CityU-11205221).
文摘This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control scheme is developed,which consists of a distributed observer and an adaptive pole placement control law.It is shown that under the proposed distributed adaptive control scheme,all signals in the closed-loop system are bounded and the outputs of all the followers track the output of the leader asymptotically.The effectiveness of the proposed scheme is demonstrated by one practical example and one numerical example.
基金Research Grants Council of Hong Kong under Grant CityU-11205221.
文摘This article investigates the problem of robust adaptive leaderless consensus for heterogeneous uncertain nonminimumphase linear multi-agent systems over directed communication graphs. Each agent is assumed tobe of unknown nominal dynamics and also subject to external disturbances and/or unmodeled dynamics. Anovel distributed robust adaptive control strategy is proposed. It is shown that the robust adaptive leaderlessconsensus problem is solved with the proposed control strategy under some sufficient conditions. Two examplesare provided to demonstrate the efficacy of the proposed control strategy.
文摘An improved algorithm which is based on the recursive closed-form algorithm fornon-minimum phase FIR system identification via higher order statistics is presented.In order toincrease the parametric estimation accuracy,the improved algorithm uses the optimal iterativemethod to seek the nonlinear least-square solution.Finally,the simulation examples are alsogiven.
文摘Spinal cord injury is an intractable traumatic injury. The most common hurdles faced during spinal cord injury are failure of axonal regrowth and reconnection to target sites. These also tend to be the most challenging issues in spinal cord injury. As spinal cord injury progresses to the chronic phase, lost motor and sensory functions are not recovered. Several reasons may be attributed to the failure of recovery from chronic spinal cord injury. These include factors that inhibit axonal growth such as activated astrocytes, chondroitin sulfate proteoglycan, myelin-associated proteins, inflammatory microglia, and fibroblasts that accumulate at lesion sites. Skeletal muscle atrophy due to denervation is another chronic and detrimental spinal cord injury–specific condition. Although several intervention strategies based on multiple outlooks have been attempted for treating spinal cord injury, few approaches have been successful. To treat chronic spinal cord injury, neural cells or tissue substitutes may need to be supplied in the cavity area to enable possible axonal growth. Additionally, stimulating axonal growth activity by extrinsic factors is extremely important and essential for maintaining the remaining host neurons and transplanted neurons. This review focuses on pharmacotherapeutic approaches using small compounds and proteins to enable axonal growth in chronic spinal cord injury. This review presents some of these candidates that have shown promising outcomes in basic research(in vivo animal studies) and clinical trials: AA-NgR(310)ecto-Fc(AXER-204), fasudil, phosphatase and tensin homolog protein antagonist peptide 4, chondroitinase ABC, intracellular sigma peptide,(-)-epigallocatechin gallate, matrine, acteoside, pyrvate kinase M2, diosgenin, granulocyte-colony stimulating factor, and fampridine-sustained release. Although the current situation suggests that drug-based therapies to recover function in chronic spinal cord injury are limited, potential candidates have been identified through basic research, and these candidates may be subjects of clinical studies in the future. Moreover, cocktail therapy comprising drugs with varied underlying mechanisms may be effective in treating the refractory status of chronic spinal cord injury.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金supports from National Key Research and Development Program of China(2021YFB2800703)Sichuan Province Science and Technology Support Program(25QNJJ2419)+1 种基金National Natural Science Foundation of China(U22A2008,12404484)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202200801).
文摘Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.