期刊文献+
共找到1,233篇文章
< 1 2 62 >
每页显示 20 50 100
NON-LOCAL MODELING ON MACROSCOPIC DOMAIN PATTERNS IN PHASE TRANSFORMATION OF NiTi TUBES 被引量:3
1
作者 Yongjun He Qingping Sun 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期407-417,共11页
Recent experiments revealed many new phenomena of the macroscopic domain patterns in the stress-induced phase transformation of a superelastic polycrystalline NiTi tube during tensile loading. The new phenomena includ... Recent experiments revealed many new phenomena of the macroscopic domain patterns in the stress-induced phase transformation of a superelastic polycrystalline NiTi tube during tensile loading. The new phenomena include deformation instability with the formation of a helical domain, domain topology transition from helix to cylinder, domain-front branching and loading-path dependence of domain patterns. In this paper, we model the polycrystal as an elastic continuum with nonconvex strain energy and adopt the non-local strain gradient energy to account for the energy of the diffusive domain front. We simulate the equilibrium domain patterns and their evolution in the tubes under tensile loading by a non-local Finite Element Method (FEM). It is revealed that the observed loading-path dependence and topology transition of do- main patterns are due to the thermodynamic metastability of the tube system. The computation also shows that the tube-wall thickness has a significant effect on the domain patterns: with fixed material properties and interfacial energy density, a large tube-wall thickness leads to a long and slim helical domain and a severe branching of the cylindrical-domain front. 展开更多
关键词 martensitic phase transition macroscopic domain patterns NiTi polycrystalline tubes non-local and nonconvex elasticity tube-wall thickness effect metastability and instability
在线阅读 下载PDF
Local binary pattern-based reversible data hiding 被引量:4
2
作者 Monalisa Sahu Neelamadhab Padhy +1 位作者 Sasanko Sekhar Gantayat Aditya Kumar Sahu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期695-709,共15页
A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided ... A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided into various 3×3 blocks.Then,using the LBP-based image descriptor,the LBP codes for each block are computed.Next,the obtained LBP codes are XORed with the embedding bits and are concealed in the respective blocks using the proposed pixel readjustment process.Further,each cover image(CI)pixel produces two different stego-image pixels.Likewise,during extraction,the CI pixels are restored without the loss of a single bit of information.The outcome of the proposed technique with respect to perceptual transparency measures,such as peak signal-to-noise ratio and structural similarity index,is found to be superior to that of some of the recent and state-of-the-art techniques.In addition,the proposed technique has shown excellent resilience to various stego-attacks,such as pixel difference histogram as well as regular and singular analysis.Besides,the out-off boundary pixel problem,which endures in most of the contemporary data hiding techniques,has been successfully addressed. 展开更多
关键词 hiding capacity(HC) local binary pattern(LBP) peak signal-to-noise ratio(PSNR) reversible data hiding
在线阅读 下载PDF
A Novel Tracking-by-Detection Method with Local Binary Pattern and Kalman Filter 被引量:1
3
作者 Zhongli Wang Chunxiao Jia +6 位作者 Baigen Cai Litong Fan Chuanqi Tao Zhiyi Zhang Yinling Wang Min Zhang Guoyan Lyu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期74-87,共14页
Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experim... Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experiments show that under some scenarios,such as non-uniform illumination changing,serious occlusion,or motion-blurred,it may fails to track the object. In this paper,to surmount some of these shortages,especially for the non-uniform illumination changing,and give full play to the performance of the tracking-learning-detection framework, we integrate the local binary pattern( LBP) with the cascade classifiers,and define a new classifier named ULBP( Uniform Local Binary Pattern) classifiers. When the object appearance has rich texture features,the ULBP classifier will work instead of the nearest neighbor classifier in TLD algorithm,and a recognition module is designed to choose the suitable classifier between the original nearest neighbor( NN) classifier and the ULBP classifier. To further decrease the computing load of the proposed tracking approach,Kalman filter is applied to predict the searching range of the tracking object.A comprehensive study has been conducted to confirm the effectiveness of the proposed algorithm (TLD _ULBP),and different multi-property datasets were used. The quantitative evaluations show a significant improvement over the original TLD,especially in various lighting case. 展开更多
关键词 Tracking-Learning-Detection (TLD) local binary pattern (LBP) Kalman filter
在线阅读 下载PDF
Vehicle detection algorithm based on codebook and local binary patterns algorithms 被引量:1
4
作者 许雪梅 周立超 +1 位作者 墨芹 郭巧云 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期593-600,共8页
Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establis... Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy. 展开更多
关键词 background modeling Gaussian pyramid CODEBOOK Local binary patterns(LBP) moving vehicle detection
在线阅读 下载PDF
Defocus Blur Segmentation Using Local Binary Patterns with Adaptive Threshold 被引量:1
5
作者 Usman Ali Muhammad Tariq Mahmood 《Computers, Materials & Continua》 SCIE EI 2022年第4期1597-1611,共15页
Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection ... Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection and segmentation is a challenging task.Hence,the performance of the blur measure operator is an essential factor and needs improvement to attain perfection.In this paper,we propose an effective blur measure based on local binary pattern(LBP)with adaptive threshold for blur detection.The sharpness metric developed based on LBP used a fixed threshold irrespective of the type and level of blur,that may not be suitable for images with variations in imaging conditions,blur amount and type.Contrarily,the proposed measure uses an adaptive threshold for each input image based on the image and blur properties to generate improved sharpness metric.The adaptive threshold is computed based on the model learned through support vector machine(SVM).The performance of the proposed method is evaluated using two different datasets and is compared with five state-of-the-art methods.Comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all of the compared methods. 展开更多
关键词 Adaptive threshold blur measure defocus blur segmentation local binary pattern support vector machine
在线阅读 下载PDF
An Improved Real-Time Face Recognition System at Low Resolution Based on Local Binary Pattern Histogram Algorithm and CLAHE 被引量:2
6
作者 Kamal Chandra Paul Semih Aslan 《Optics and Photonics Journal》 2021年第4期63-78,共16页
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><... This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span> 展开更多
关键词 Face Detection Face Recognition Low Resolution Feature Extraction Security System Access Control System Viola-Jones Algorithm LBPH Local binary pattern Histogram
在线阅读 下载PDF
Local Binary Patterns and Its Variants for Finger Knuckle Print Recognition in Multi-Resolution Domain 被引量:1
7
作者 D. R. Arun C. Christopher Columbus K. Meena 《Circuits and Systems》 2016年第10期3142-3149,共8页
Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach... Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach of personal authentication using texture based Finger Knuckle Print (FKP) recognition in multiresolution domain. FKP images are rich in texture patterns. Recently, many texture patterns are proposed for biometric feature extraction. Hence, it is essential to review whether Local Binary Patterns or its variants perform well for FKP recognition. In this paper, Local Directional Pattern (LDP), Local Derivative Ternary Pattern (LDTP) and Local Texture Description Framework based Modified Local Directional Pattern (LTDF_MLDN) based feature extraction in multiresolution domain are experimented with Nearest Neighbor and Extreme Learning Machine (ELM) Classifier for FKP recognition. Experiments were conducted on PolYU database. The result shows that LDTP in Contourlet domain achieves a promising performance. It also proves that Soft classifier performs better than the hard classifier. 展开更多
关键词 Biometrics Finger Knuckle Print Contourlet Transform Local binary pattern (LBP) Local Directional pattern (LDP) Local Derivative Ternary pattern (LDTP) Local Texture Description Framework Based Modified Local Directional pattern (LTDF_MLDN) Nearest Neighbor (NN) Classifier Extreme Learning Machine (ELM) Classifier
在线阅读 下载PDF
Classification of Gastric Lesions Using Gabor Block Local Binary Patterns
8
作者 Muhammad Tahir Farhan Riaz +1 位作者 Imran Usman Mohamed Ibrahim Habib 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期4007-4022,共16页
The identification of cancer tissues in Gastroenterology imaging poses novel challenges to the computer vision community in designing generic decision support systems.This generic nature demands the image descriptors ... The identification of cancer tissues in Gastroenterology imaging poses novel challenges to the computer vision community in designing generic decision support systems.This generic nature demands the image descriptors to be invariant to illumination gradients,scaling,homogeneous illumination,and rotation.In this article,we devise a novel feature extraction methodology,which explores the effectiveness of Gabor filters coupled with Block Local Binary Patterns in designing such descriptors.We effectively exploit the illumination invariance properties of Block Local Binary Patterns and the inherent capability of convolutional neural networks to construct novel rotation,scale and illumination invariant features.The invariance characteristics of the proposed Gabor Block Local Binary Patterns(GBLBP)are demonstrated using a publicly available texture dataset.We use the proposed feature extraction methodology to extract texture features from Chromoendoscopy(CH)images for the classification of cancer lesions.The proposed feature set is later used in conjuncture with convolutional neural networks to classify the CH images.The proposed convolutional neural network is a shallow network comprising of fewer parameters in contrast to other state-of-the-art networks exhibiting millions of parameters required for effective training.The obtained results reveal that the proposed GBLBP performs favorably to several other state-of-the-art methods including both hand crafted and convolutional neural networks-based features. 展开更多
关键词 Texture analysis Gabor filters gastroenterology imaging convolutional neural networks block local binary patterns
在线阅读 下载PDF
Novel similarity measures for face representation based on local binary pattern
9
作者 祝世虎 封举富 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期223-226,共4页
The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter ... The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features. 展开更多
关键词 similarity measurement local binary pattern Earth Mover's Distance IMage Euclidean Distance
在线阅读 下载PDF
A Local Binary Pattern-Based Method for Color and Multicomponent Texture Analysis
10
作者 Yao Taky Alvarez Kossonou Alain Clément +1 位作者 Bouchta Sahraoui Jérémie Zoueu 《Journal of Signal and Information Processing》 2020年第3期58-73,共16页
Local Binary Patterns (LBPs) have been highly used in texture classification <span style="font-family:Verdana;">for their robustness, their ease of implementation an</span><span style="fo... Local Binary Patterns (LBPs) have been highly used in texture classification <span style="font-family:Verdana;">for their robustness, their ease of implementation an</span><span style="font-family:Verdana;">d their low computational</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">cost. Initially designed to deal with gray level images, several methods based on them in the literature have been proposed for images having more than one spectral band. To achieve it, whether assumption using color information or combining spectral band two by two was done. Those methods use micro </span><span style="font-family:Verdana;">structures as texture features. In this paper, our goal was to design texture features which are relevant to color and multicomponent texture analysi</span><span style="font-family:Verdana;">s withou</span><span style="font-family:Verdana;">t any assumption.</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Based on methods designed for gray scale images, we find the combination of micro and macro structures efficient for multispectral texture analysis. The experimentations were carried out on color images from Outex databases and multicomponent images from red blood cells captured using a multispectral microscope equipped with 13 LEDs ranging </span><span style="font-family:Verdana;">from 375 nm to 940 nm. In all achieved experimentations, our propos</span><span style="font-family:Verdana;">al presents the best classification scores compared to common multicomponent LBP methods.</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">99.81%, 100.00%,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">99.07% and 97.67% are</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">maximum scores obtained with our strategy respectively applied to images subject to rotation, blur, illumination variation and the multicomponent ones.</span> 展开更多
关键词 Multispectral Images Local binary patterns (LBP) Texture Analysis Rotation Invariance Illumination Variation Blurring Invariance
在线阅读 下载PDF
Android Malware Detection Using Local Binary Pattern and Principal Component Analysis
11
作者 Qixin Wu Zheng Qin +3 位作者 Jinxin Zhang Hui Yin Guangyi Yang Kuangsheng Hu 《国际计算机前沿大会会议论文集》 2017年第1期63-66,共4页
Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applicatio... Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applications are increasing rapidly as well,which attracts attention of malware attackers and researchers alike.Due to the endless evolution of the malware,it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information.In this paper,we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis,which can visualize malware and detect malware accurately.Also,our method analyzes malware binary directly without any decompiler,sandbox or virtual machines,which avoid time and resource consumption caused by decompiler or monitor in this process.Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%. 展开更多
关键词 ANDROID MALWARE detection binary TEXTURE FEATURE Local binary pattern Principal component analysis
在线阅读 下载PDF
基于扩展局部二值模式的多尺度人脸表情识别方法
12
作者 胡黄水 戚星烁 +1 位作者 王出航 王玲 《吉林大学学报(理学版)》 北大核心 2025年第5期1427-1436,共10页
针对人脸表情识别在复杂环境下姿态和光照鲁棒性差的问题,提出一种融合扩展局部二值模式和多尺度网络结构的人脸表情识别方法.该方法通过扩展传统局部二值模式的感受野并增强像素间的空间联系,减少光照对人脸表情识别的噪声干扰;通过将... 针对人脸表情识别在复杂环境下姿态和光照鲁棒性差的问题,提出一种融合扩展局部二值模式和多尺度网络结构的人脸表情识别方法.该方法通过扩展传统局部二值模式的感受野并增强像素间的空间联系,减少光照对人脸表情识别的噪声干扰;通过将特征图在通道维度均匀分为若干子集并利用不同数量相同卷积块的方式提取特征图的多尺度特征,有效处理人脸姿态变化.在数据集Fer2013和RAF-DB上的实验结果表明,该方法可有效提高人脸表情识别的准确率和鲁棒性,为复杂环境下的人脸表情识别提供了有效解决方案. 展开更多
关键词 人脸表情识别 局部二值模式 多尺度网络 卷积神经网络
在线阅读 下载PDF
基于自适应反馈机制的小差异化图像纹理特征信息数据检索
13
作者 刘洋 毛克明 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期73-81,共9页
针对小差异化图像纹理相似度和噪声等因素导致纹理特征挖掘效果较差的问题,设计一种自适应反馈结合局部二值机制的小差异化图像纹理特征挖掘方法.使用规范割策略将图像数据各点拟作节点,使用节点间的连接线权重计算2点的相似度,采用支... 针对小差异化图像纹理相似度和噪声等因素导致纹理特征挖掘效果较差的问题,设计一种自适应反馈结合局部二值机制的小差异化图像纹理特征挖掘方法.使用规范割策略将图像数据各点拟作节点,使用节点间的连接线权重计算2点的相似度,采用支持向量机训练图像属性参数分类图像属性,进一步归纳图像类别.运用跳跃连接方法传输图像数据,将数据引入卷积神经网络剔除图像噪声.将中心点像素值当作反馈因子,创建自适应反馈判定条件,利用局部二值模式实现小差异化图像纹理特征挖掘.在MATLAB平台进行试验,从卷积神经网络收敛性、图像频谱纹理单元数、平均准确率、图像数据匹配度等方面进行了分析,分析结果表明:随着迭代次数不断增加,精度损失逐渐降低,基本收敛到稳定值,达到了预期训练效果;所提出方法挖掘的图像频谱纹理单元数3800个以上,更贴合人眼视觉信息;平均准确率为0.87,准确率@1、准确率@5和准确率@10的平均值分别为0.90、0.84和0.85;挖掘耗时低于5 s,图像数据匹配度高于90.3%,验证了所提出方法可在图像纹理特征识别操作中发挥应有作用. 展开更多
关键词 小差异化图像 纹理特征 数据挖掘 自适应反馈 属性分类 跳跃连接 局部二值模式 支持向量机
在线阅读 下载PDF
“数字图像处理”课程实验案例教学探索
14
作者 阎石 陆福相 《电气电子教学学报》 2025年第3期224-228,共5页
针对“数字图像处理”教学中存在的内容陈旧、重理论轻实践、教学方法单一等问题,通过基于局部二值模式的纹理分类实验案例,探索将科学研究新成果融入课程,使课程内容具有科学性和先进性。以解决问题为目标,开展基于问题的研究性学习,... 针对“数字图像处理”教学中存在的内容陈旧、重理论轻实践、教学方法单一等问题,通过基于局部二值模式的纹理分类实验案例,探索将科学研究新成果融入课程,使课程内容具有科学性和先进性。以解决问题为目标,开展基于问题的研究性学习,贯彻“学”“做”结合,推进“课前、课中、课后”紧密结合,激发学生的学习热情,培养学生实践和创新能力,实现从知识传授到知识和能力并重培养。 展开更多
关键词 局部二值模式 教学改革 研究性学习 实验案例
在线阅读 下载PDF
基于ICM模型与模糊模式识别的体育电子秒表高精度示值读取方法研究
15
作者 于艳 《国外电子测量技术》 2025年第5期50-55,共6页
针对体育电子秒表示值读取过程中,原始读取图像容易受到示值区域边缘模糊及反光效应影响,导致读取精度低的问题,提出基于迭代条件模型(Iterated Conditional Modes,ICM)与模糊模式识别的体育电子秒表高精度示值读取方法研究。通过调整... 针对体育电子秒表示值读取过程中,原始读取图像容易受到示值区域边缘模糊及反光效应影响,导致读取精度低的问题,提出基于迭代条件模型(Iterated Conditional Modes,ICM)与模糊模式识别的体育电子秒表高精度示值读取方法研究。通过调整灰度分布增强图像对比度,实现图像的二值化分割处理。从二值化图像的最大连通区域出发,利用ICM模型的非线性耦合调制特性和记忆功能,划分干扰区域与示值区域,模拟神经元点火过程标记有效像素,完成图像示值区域的精准提取,有效去除分割残留。提出基于ICM模型的时空一致性筛选机制,进一步优化示值区域提取效果。在提取的示值区域中提取数字形状特征,构建模糊集合描述特征取值范围,为每个特征分配岭形隶属函数,计算数字在各特征上的隶属度矩阵,依据特征重要性分配权重,综合隶属度计算匹配度,并按最大隶属原则输出最终示值。实验结果表明:所提方法在复杂背景、光照不均及倾斜条件下均实现100%准确读取,结构相似性指数(Structural Similarity Index,SSIM)均值可达0.962,SSIM值最高达到0.99,具有较高的读取精度。 展开更多
关键词 电子秒表 原始读取图像 迭代条件模型 模糊模式识别 二值化图像
原文传递
基于改进的LBP和Gabor滤波器的纹理特征提取方法 被引量:1
16
作者 陈佳明 陈旭 +1 位作者 任硕 邸宏伟 《南京信息工程大学学报》 北大核心 2025年第2期227-234,共8页
纹理提取是计算机视觉领域的一项重要任务,纹理提取的质量对纹理分类的准确性具有关键影响.传统单一的纹理提取方法难以准确描述各类纹理的特征.本文提出一种基于改进的位置局部二值模式(IPLBP)和Gabor滤波器的纹理提取算法,其中,改进... 纹理提取是计算机视觉领域的一项重要任务,纹理提取的质量对纹理分类的准确性具有关键影响.传统单一的纹理提取方法难以准确描述各类纹理的特征.本文提出一种基于改进的位置局部二值模式(IPLBP)和Gabor滤波器的纹理提取算法,其中,改进算法在局部二值模式(LBP)的基础上通过提取纹理位置信息来提高纹理描述能力.利用改进后的LBP算法提取局部纹理信息,Gabor滤波器提取全局纹理信息,将两种特征信息进行融合后使用支持向量机(SVM)进行分类.实验结果表明,所提出的算法在纹理材质分类任务上展现出了良好的性能.相比传统的LBP算法,该算法能够更准确地捕捉不同纹理特征之间的差异. 展开更多
关键词 纹理提取 局部二值模式 GABOR滤波器 支持向量机
在线阅读 下载PDF
基于LPQ和NLBP的特征融合算法及其应用
17
作者 陈梦 刘靖丹 逯洋 《吉林大学学报(理学版)》 北大核心 2025年第4期1122-1136,共15页
针对传统方法在纹理分类中过于依赖局部特征而忽视全局特征的问题,提出一种基于局部与非局部模式相结合的特征提取方法.该方法融合了局部相位量化和非局部二值模式两种算法,首先通过两种算法分别对预处理后的图像进行特征提取,然后将两... 针对传统方法在纹理分类中过于依赖局部特征而忽视全局特征的问题,提出一种基于局部与非局部模式相结合的特征提取方法.该方法融合了局部相位量化和非局部二值模式两种算法,首先通过两种算法分别对预处理后的图像进行特征提取,然后将两者的特征直方图进行加权融合,最后用卡方距离和最近邻分类器进行纹理分类.为验证该方法的有效性,构建了满族八旗旗帜图像数据集,并将该算法应用于该数据集的分类任务中.实验结果表明,相较于单一算法,新算法在多个数据集上均有更高的分类准确率和鲁棒性. 展开更多
关键词 局部相位量化 非局部二值模式 纹理分类 满族旗帜图像
在线阅读 下载PDF
基于分块高阶LDP的单样本掌纹识别 被引量:1
18
作者 郭金玉 赵翠霞 《沈阳大学学报(自然科学版)》 2025年第3期224-230,共7页
为了提高单样本生物特征识别的准确率,提出一种基于分块高阶局部导数模式(LDP)的单样本掌纹识别方法。首先,掌纹图像经过预处理提取感兴趣区域(ROI),并对ROI进行分块;然后,利用高阶LDP进行特征提取,将所有块的特征向量连接在一起形成一... 为了提高单样本生物特征识别的准确率,提出一种基于分块高阶局部导数模式(LDP)的单样本掌纹识别方法。首先,掌纹图像经过预处理提取感兴趣区域(ROI),并对ROI进行分块;然后,利用高阶LDP进行特征提取,将所有块的特征向量连接在一起形成一个全局的特征向量用于掌纹识别;最后,利用最近邻分类器进行掌纹识别。为了验证该方法的有效性,利用PloyU掌纹数据库和UST图像库进行仿真研究。仿真结果表明,与分块局部二值模式(LBP)和卷积神经网络(CNN)相比,该方法的识别率在2个图像库上均得到了提高。 展开更多
关键词 单样本掌纹识别 图像分块 特征提取 高阶局部导数模式 局部二值模式
在线阅读 下载PDF
基于欠完备字典重构的无监督织物疵点检测方法
19
作者 刘建欣 潘如如 周建 《上海交通大学学报》 北大核心 2025年第2期283-292,共10页
针对当前自动织物检测方法大多仍需人工挑选训练集而无法实现无监督学习的问题,提出使用中值稳健扩展局部二值模式(MRELBP)特征的无疵图像筛选方法与欠完备字典重构疵点检测方法,实现自动无监督疵点检测,并采用自适应字典大小搜索算法,... 针对当前自动织物检测方法大多仍需人工挑选训练集而无法实现无监督学习的问题,提出使用中值稳健扩展局部二值模式(MRELBP)特征的无疵图像筛选方法与欠完备字典重构疵点检测方法,实现自动无监督疵点检测,并采用自适应字典大小搜索算法,自动选取合适字典大小.算法首先对织物样本进行无疵图像的自动筛选,然后使用K-SVD算法将筛选后的正常图像块作为训练集获取欠完备字典,最后将通过计算重构后的结构相似性指标(SSIM)作为阈值进行疵点检测.在334张含有经向、纬向、块状疵点的平纹白坯布上进行实验,与使用残差分割疵点的K-SVD方法相比,正检率平均提升21.81%,误检率平均降低0.72%,每张图像的检测速率平均提升50%,在AITEX数据集上取得了平均83.29%的正检率,证明了本算法的有效性. 展开更多
关键词 织物疵点检测 中值稳健扩展局部二值模式 字典学习 无监督检测
在线阅读 下载PDF
基于局部自适应明暗模式的图像纹理特征提取方法
20
作者 李江美 陈熙 《激光杂志》 北大核心 2025年第7期101-110,共10页
局部二值模式(LBP)只考虑中心像素与不同方向上相邻像素间的明暗趋势,并不能精确提取不同方向上的明暗强度信息。此外,不同的图像结构处于相同的明暗区域时,也可能被编码为同一种模式。因此,为解决以上问题,提出一种基于局部明暗强度的... 局部二值模式(LBP)只考虑中心像素与不同方向上相邻像素间的明暗趋势,并不能精确提取不同方向上的明暗强度信息。此外,不同的图像结构处于相同的明暗区域时,也可能被编码为同一种模式。因此,为解决以上问题,提出一种基于局部明暗强度的图像局部纹理算法,即局部自适应明暗强度矢量二值模式,该算法由局部自适应明暗矢量模式和局部明暗强度模式两个特征分量组成。局部自适应明暗矢量模式在MxN窗口内计算不同方向上的正负平均矢量阈值,以此精确地提取每个中心像素周围不同方向上不同明暗强度特征;而局部明暗强度模式根据中心像素与相邻像素之间明暗程度进行排序编码,对于提取相同明暗区域的不同纹理特征更加有效。另外,为提高低分辨纹理图像的识别性能,建立多尺度纹理高斯金字塔进行特征融合。最后,使用随机森林和最近邻分类器在5个图像数据集上进行分类实验,实验验证了该算法的有效性。 展开更多
关键词 图像局部特征 局部自适应明暗强度矢量二值模式 多尺度高斯金字塔 图像特征融合 随机森林
原文传递
上一页 1 2 62 下一页 到第
使用帮助 返回顶部