Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in add...Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in addition, to make also a certain improvement on Smith's PIO definition and PIO types. These modified criteria are applied to predict PIO tendency of various different configurations on the variable stability aircraft NT-33 in case of supposed non-linearity, and predicted results are compared with the flight tests and analytical results in the case of linear hypothesis given in Ref. (4)展开更多
Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear sy...Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear system by analysis. Adaptive Fuzzy system provides a way for solving this problem because it can approximate any non-linear system at any accuracy. The key for adaptive Fuzzy system to solve problem is its learning ability, so the authors present a learning algorithm for Adaptive fuzzy system, which can build the system's model by learning from the measurement data as well as experience knowledge with high accuracy. Furthermore, the experiment using the learning algorithm to model a servo-mechanism and to construct the fault diagnosis system based on the model is carried out, the results is very good.展开更多
To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of tradition...To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of traditional Extended Kalman Filtering( EKF). It uses the UKF as the residual generation method and the Weighted-Sum Squared Residual (WSSR) as the fault detection strategy. The simulation results are provided which demonstrate better effectiveness and a higher detection ratio of the developed methods.展开更多
Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force an...Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force and contact area.However,the real contact area fraction should never equal one;there must be a limit smaller than the apparent area,implying that the real contact area cannot increase linearly indefinitely.In this paper,the real contact area between two polymethylmethacrylate(PMMA)blocks under heavy load is measured using the total reflection method,and the contact area is analyzed using the image processing method.The results show that the real contact area increases with normal load linearly in light loads but non-linearly in heavy loads;the number of contact spots increases with load linearly in light loads but also non-linearly in heavy loads,synchronous with the change in the real contact area.The GW,MB,and Zhao,Maietta,and Chang(ZMC)models were used to predict the experiment results,but none of them predicted the non-linear stage.A revised GW model based on the bulk deformation hypothesis performs better in predicting the non-linear stage.The study’s findings can be applied to PMMA or other similar materials,and they can serve as a useful reference for future research on the contact mechanisms of other materials.展开更多
Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkl...Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter.展开更多
This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial...This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications.展开更多
Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resour...Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.展开更多
Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coeffici...Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coefficients reveal only three spatial orientations. Whereas the ridgelet transform has a superior capability for direction detection and the ability to process signals with linearly changing characteristics. In this paper, we present the issue of low signal-to-noise ratio (SNR) seismic data processing based on the ridgelet transform. Actual seismic data with low SNR from south China has been processed using ridgelet transforms to improve the SNR and the continuity of seismic events. The results show that the ridgelet transform is better than the wavelet transform for these tasks.展开更多
The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measuremen...The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate.展开更多
A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients c...A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients can be estimated by a linear algorithm. Thewavelet neural network holds some advantages superior to other typesof neural networks. First, its network structure is easy to specifybased on its theoretical analysis and intuition. Secondly, networktraining does not rely on stochastic gradient type techniques andavoids the problem of poor convergence or undesirable local minima.展开更多
This paper presents a model-free adaptive iterative learning control(ILC)scheme called a proportional-type ILC scheme for non-linear systems.The obvious characteristic of the proposed ILC scheme is that we can easily ...This paper presents a model-free adaptive iterative learning control(ILC)scheme called a proportional-type ILC scheme for non-linear systems.The obvious characteristic of the proposed ILC scheme is that we can easily finish the ILC task just utilising the Lipschitz constant of the system.In the proposed ILC scheme,the time-vary learning gain can be produced merely by input and output(I/O)measurements.Moreover,the convergence conclusion can be expressed by the ranges of the pseudo-partial derivative and the learning gain.In actual operation,a reasonable and useful convergence condition by a constant is also provided for selection.At last,the effectiveness of the proposed ILC scheme is shown by simulations.展开更多
In this paper,a novel global non-recursive stabilisation design framework is addressed for a class of inherent non-linear systems with the presence of system uncertainties and external nonvanishing disturbances.By vir...In this paper,a novel global non-recursive stabilisation design framework is addressed for a class of inherent non-linear systems with the presence of system uncertainties and external nonvanishing disturbances.By virtue of the facility that the weighted homogeneity brings into the system synthesis procedure,a non-recursive design method is proposed to yield a globally effectiveness robust controller with its expression following a quasi-linear manner.By proceeding with a rigorous non-recursive stability analysis framework,which covers both global asymptotical and finite-time convergence cases,the common recursively treated derivative items in backsteppingbased methods are totally avoided.Inspired by the homogeneous domination technique,a scaling gain performed as a bandwidth factor is introduced into the original system and hence the robustness of the controlled system can be adjusted to meet the practical performance requirements.A numerical example and its control performance simulations are given to illustrate the effectiveness and simplicity of the proposed controller design framework.展开更多
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is...The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.展开更多
Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. ...Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.展开更多
A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of...A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of simulated moving bed chromatography (SMBC). The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of concentration vector. The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of l,1'-bi-2-naphthol enantiomers using SMBC. This model is useful for design, operation, optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects, especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.展开更多
Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere...Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.展开更多
Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engin...Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.展开更多
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi...A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.展开更多
In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-_(t)×C_(x)^(n).Under certain assumptions,they prove the existence and uniqueness of holomorphic sol...In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-_(t)×C_(x)^(n).Under certain assumptions,they prove the existence and uniqueness of holomorphic solution near origin of C-_(t)×C-_(x)^(n).展开更多
Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To...Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.展开更多
文摘Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in addition, to make also a certain improvement on Smith's PIO definition and PIO types. These modified criteria are applied to predict PIO tendency of various different configurations on the variable stability aircraft NT-33 in case of supposed non-linearity, and predicted results are compared with the flight tests and analytical results in the case of linear hypothesis given in Ref. (4)
文摘Although lots of valuable results for fault diagnosis based on model have been achieved in linear system, it is difficult to apply these results to non-linear system due to the difficulty of modeling the non-linear system by analysis. Adaptive Fuzzy system provides a way for solving this problem because it can approximate any non-linear system at any accuracy. The key for adaptive Fuzzy system to solve problem is its learning ability, so the authors present a learning algorithm for Adaptive fuzzy system, which can build the system's model by learning from the measurement data as well as experience knowledge with high accuracy. Furthermore, the experiment using the learning algorithm to model a servo-mechanism and to construct the fault diagnosis system based on the model is carried out, the results is very good.
文摘To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of traditional Extended Kalman Filtering( EKF). It uses the UKF as the residual generation method and the Weighted-Sum Squared Residual (WSSR) as the fault detection strategy. The simulation results are provided which demonstrate better effectiveness and a higher detection ratio of the developed methods.
基金Supported by National Natural Science Foundation of China(Grant No.11872033)Beijing Municipal Natural Science Foundation(Grant No.3172017)。
文摘Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force and contact area.However,the real contact area fraction should never equal one;there must be a limit smaller than the apparent area,implying that the real contact area cannot increase linearly indefinitely.In this paper,the real contact area between two polymethylmethacrylate(PMMA)blocks under heavy load is measured using the total reflection method,and the contact area is analyzed using the image processing method.The results show that the real contact area increases with normal load linearly in light loads but non-linearly in heavy loads;the number of contact spots increases with load linearly in light loads but also non-linearly in heavy loads,synchronous with the change in the real contact area.The GW,MB,and Zhao,Maietta,and Chang(ZMC)models were used to predict the experiment results,but none of them predicted the non-linear stage.A revised GW model based on the bulk deformation hypothesis performs better in predicting the non-linear stage.The study’s findings can be applied to PMMA or other similar materials,and they can serve as a useful reference for future research on the contact mechanisms of other materials.
基金This work was supported by the Youth Project of Hunan Provincial Department of Education(Grant No.22B0334)the Bridge and Tunnel Engineering Innovation Project of Changsha University of Science&Technology(Grant No.11ZDXK11)and the Practical Innovation and Entrepreneurship Capacity Improvement Plan of Changsha University of Science and Technology(Grant No.CLSJCX23029).
文摘Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter.
文摘This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications.
基金the National Natural Science Foundation of China(No.61871133)the Natural Science Foundation of Fujian Province(No.2021J01587)。
文摘Aimed at the doubly near-far problems in a large range suffered by the remote user group and in a small range existing in both nearby and remote user groups during energy harvesting and computation offloading,a resource allocation method for unmanned aerial vehicle(UAV)-assisted and user cooperation non-linear energy harvesting mobile edge computing(MEC)system is proposed.The UAV equipped with an MEC server is introduced to provide energy and computing services for the remote user group to alleviate the doubly near-far problem in a large range suffered by the remote user group.The doubly near-far problem in a small range existing in both nearby and remote user groups is mitigated by user cooperation.The specific user cooperation strategy is that the user near the base station or the UAV is used as a relay to transfer the computing task of the user far from the base station or the UAV to the MEC server for computing.By jointly optimizing users’offloading time,users’transmitting power,and the hovering position of the UAV,the resource allocation problem is modeled as a nonlinear programming problem with the objective of maximizing computation efficiency.The suboptimal solution is obtained by adopting the differential evolution algorithm.Simulation results show that,compared with the resource allocation method based on genetic algorithm and the without user cooperation method,the proposed method has higher computation efficiency.
基金This paper is supported by China Petrochemical Key Project in the"11th Five-Year"Plan Technology and the Doctorate Fund of Ministry of Education of China (No.20050491504)
文摘Wavelet transforms have been successfully used in seismic data processing with their ability for local time - frequency analysis. However, identification of directionality is limited because wavelet transform coefficients reveal only three spatial orientations. Whereas the ridgelet transform has a superior capability for direction detection and the ability to process signals with linearly changing characteristics. In this paper, we present the issue of low signal-to-noise ratio (SNR) seismic data processing based on the ridgelet transform. Actual seismic data with low SNR from south China has been processed using ridgelet transforms to improve the SNR and the continuity of seismic events. The results show that the ridgelet transform is better than the wavelet transform for these tasks.
基金Project(2014GK2013)supported by the Science and Technology Program of Hunan Province,China
文摘The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate.
基金Supported by the Eu Information Technologies Programme Project(No. 22416) and National High Tech R&D Project(863/Computer Integrated Manufacture System AA413130) of China.
文摘A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients can be estimated by a linear algorithm. Thewavelet neural network holds some advantages superior to other typesof neural networks. First, its network structure is easy to specifybased on its theoretical analysis and intuition. Secondly, networktraining does not rely on stochastic gradient type techniques andavoids the problem of poor convergence or undesirable local minima.
文摘This paper presents a model-free adaptive iterative learning control(ILC)scheme called a proportional-type ILC scheme for non-linear systems.The obvious characteristic of the proposed ILC scheme is that we can easily finish the ILC task just utilising the Lipschitz constant of the system.In the proposed ILC scheme,the time-vary learning gain can be produced merely by input and output(I/O)measurements.Moreover,the convergence conclusion can be expressed by the ranges of the pseudo-partial derivative and the learning gain.In actual operation,a reasonable and useful convergence condition by a constant is also provided for selection.At last,the effectiveness of the proposed ILC scheme is shown by simulations.
基金supported by National Natural Science Foundation of China[grant number 61503236 and 61573099].
文摘In this paper,a novel global non-recursive stabilisation design framework is addressed for a class of inherent non-linear systems with the presence of system uncertainties and external nonvanishing disturbances.By virtue of the facility that the weighted homogeneity brings into the system synthesis procedure,a non-recursive design method is proposed to yield a globally effectiveness robust controller with its expression following a quasi-linear manner.By proceeding with a rigorous non-recursive stability analysis framework,which covers both global asymptotical and finite-time convergence cases,the common recursively treated derivative items in backsteppingbased methods are totally avoided.Inspired by the homogeneous domination technique,a scaling gain performed as a bandwidth factor is introduced into the original system and hence the robustness of the controlled system can be adjusted to meet the practical performance requirements.A numerical example and its control performance simulations are given to illustrate the effectiveness and simplicity of the proposed controller design framework.
基金Project supported by the National Natural Science Foundation of China (No. 10472060)Natural Science Founda-tion of Shanghai Municipality (No. 04ZR14058)Doctor Start-up Foundation of Shenyang Institute of Aeronautical Engineering (No. 05YB04).
文摘The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
基金Project (No.SJ08E204) supported by the Natural Science Foundation of Shanxi Province,China
文摘Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.
基金Supported by the National Natural Science Foundation of China(No.20206027)and the Natural Science Foundation of Zhejiang Province(No.202046).
文摘A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of simulated moving bed chromatography (SMBC). The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of concentration vector. The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of l,1'-bi-2-naphthol enantiomers using SMBC. This model is useful for design, operation, optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects, especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.
基金This work is supported by Academic Research Fund Tier 2,Ministry of Education-Singapore(MOE2019-T2-2-147)T.C.acknowledges support from the National Key Research and Development Program of China(2019YFA0709100,2020YFA0714504).
文摘Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices.Here,sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradi-ation in far field.By varying laser fluence and scanning speed,nano-feature sizes can be flexibly tuned.Such small patterns are attributed to the co-effect of microsphere focusing,two-photons absorption,top threshold effect,and high-repetition-rate femtosecond laser-induced incubation effect.The minimum feature size can be reduced down to~30 nm(λ/26)by manipulating film thickness.The fitting analysis between the ablation width and depth predicts that the feature size can be down to~15 nm at the film thickness of~10 nm.A nano-grating is fabricated,which demonstrates desirable beam diffraction performance.This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.
基金supported by National Natural Science Foundation of China (Grant No. 60879002)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA110112)
文摘Many simple nonlinear main journal bearing models have been studied theoretically, but the connection to existing engineering system has not been equally investigated. The consideration of the characteristics of engine main journal bearings may provide a prediction of the bearing load and lubrication. Due to the strong non-linear features in bearing lubrication procedure, it is difficult to predict those characteristics. A non-linear dynamic model is described for analyzing the characteristics of engine main journal bearings. Components such as crankshaft, main journals and con rods are found by applying the finite element method. Non-linear spring/dampers are introduced to imitate the constraint and supporting functions provided by the main bearing and oil film. The engine gas pressure is imposed as excitation on the model via the engine piston, con rod, etc. The bearing reaction force is calculated over one engine cycle, and meanwhile, the oil film thickness and pressure distribution are obtained based on Reynolds differential equation. It can be found that the maximum bearing reaction force always occurs when the maximum cylinder pressure arises in the cylinder adjacent to that bearing. The simulated minimum oil film thickness, which is 3 μm, demonstrates the reliability of the main journal bearings. This non-linear dynamic analysis may save computing efforts of engine main bearing design and also is of good precision and close connection to actual engine main journal bearing conditions.
基金Project(Z132012)supported by the Second Five Technology-based in Science and Industry Bureau of ChinaProject(YWF1103Q062)supported by the Fundemental Research Funds for the Central Universities in China
文摘A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.
文摘In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-_(t)×C_(x)^(n).Under certain assumptions,they prove the existence and uniqueness of holomorphic solution near origin of C-_(t)×C-_(x)^(n).
基金Project(K117K06225)supported by JSPS KAKENHI,Japan
文摘Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.