期刊文献+
共找到426篇文章
< 1 2 22 >
每页显示 20 50 100
Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data 被引量:9
1
作者 Wang Tai-Han Huang Da-Nian +2 位作者 Ma Guo-Qing Meng Zhao-Hai Li Ye 《Applied Geophysics》 SCIE CSCD 2017年第2期301-313,324,共14页
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processin... With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noise- contaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airbome gravity-gradiometry data from Vinton salt dome (south- west Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data. 展开更多
关键词 Full Tensor Gravity Gradiometry (FTG) ICCG method conjugate gradient algorithm gravity-gradiometry data inversion CPU and GPU
在线阅读 下载PDF
A Hybrid Conjugate Gradient Algorithm for Solving Relative Orientation of Big Rotation Angle Stereo Pair 被引量:4
2
作者 Jiatian LI Congcong WANG +5 位作者 Chenglin JIA Yiru NIU Yu WANG Wenjing ZHANG Huajing WU Jian LI 《Journal of Geodesy and Geoinformation Science》 2020年第2期62-70,共9页
The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochast... The fast convergence without initial value dependence is the key to solving large angle relative orientation.Therefore,a hybrid conjugate gradient algorithm is proposed in this paper.The concrete process is:①stochastic hill climbing(SHC)algorithm is used to make a random disturbance to the given initial value of the relative orientation element,and the new value to guarantee the optimization direction is generated.②In local optimization,a super-linear convergent conjugate gradient method is used to replace the steepest descent method in relative orientation to improve its convergence rate.③The global convergence condition is that the calculation error is less than the prescribed limit error.The comparison experiment shows that the method proposed in this paper is independent of the initial value,and has higher accuracy and fewer iterations. 展开更多
关键词 relative orientation big rotation angle global convergence stochastic hill climbing conjugate gradient algorithm
在线阅读 下载PDF
The Irregular Weighted Wavelet Frame Conjugate Gradient Algorithm
3
作者 Jiang Li Yi Aichun +1 位作者 Zhang Changfan Zhu Shanhua 《China Communications》 SCIE CSCD 2007年第4期48-54,共7页
The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the ... The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the irregular weighted wavelet frame operator,proposed an irregular weighted wavelet fame conjugate gradient iterative algorithm for the reconstruction of non-uniformly sampling signal. Compared the experiment results with the iterative algorithm of the Ref.[5],the new algorithm has remarkable advantages in approximation error,running time and so on. 展开更多
关键词 NON-UNIFORM sampling FRAME algorithm IRREGULAR WAVELET FRAME conjugate gradient algorithm
在线阅读 下载PDF
GENERALIZED CONJUGATE-GRADIENT ALGORITHM AND ITS APPLICATIONS TO SEISMIC TRACE INVERSION
4
作者 Zhusheng, Zhou Jishan, He Heqing, Zhao 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期183-189,共7页
1INTRODUCTIONCurently,seismictraceinversionhasalreadybeenanimportantworkinseismicdataprocessingformeticulous... 1INTRODUCTIONCurently,seismictraceinversionhasalreadybeenanimportantworkinseismicdataprocessingformeticulousoilgasexplorati... 展开更多
关键词 SEISMIC TRACE INVERSION conjugate gradient algorithm accuracy stability operation speed
在线阅读 下载PDF
TRANSFORM DOMAIN CONJUGATE GRADIENT ALGORITHM FOR ADAPTIVE FILTERING
5
作者 S.C.Chan T.S.Ng 《Journal of Electronics(China)》 2000年第1期69-76,共8页
This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and ut... This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and utilises the modified conjugate gradient method to perform sample-by-sample updating of the filter weights more efficiently. Simulation results illustrated that the proposed algorithm has the ability to provide a fast convergence speed and lower steady-error compared to that of traditional least mean square algorithm (LMSA), normalized transform domain least mean square algorithm (NT- LMSA), Quasi-Newton least mean square algorithm (Q-LMSA) and time domain conjugate gradient algorithm (TD-CGA) when the input signal is heavily coloured. 展开更多
关键词 Adaptive filtering conjugate gradient algorithm ORTHOGONAL transform Channel EQUALIZATION ECHO CANCELLATION
在线阅读 下载PDF
A Note on Global Convergence Result for Conjugate Gradient Methods
6
作者 BAI Yan qin Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200436, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第1期15-19,共5页
We extend a results presented by Y.F. Hu and C.Storey (1991) [1] on the global convergence result for conjugate gradient methods with different choices for the parameter β k . In this note, the condit... We extend a results presented by Y.F. Hu and C.Storey (1991) [1] on the global convergence result for conjugate gradient methods with different choices for the parameter β k . In this note, the conditions given on β k are milder than that used by Y.F. Hu and C. Storey. 展开更多
关键词 conjugate gradient algorithm descent property global convergence restarting
在线阅读 下载PDF
Conjugate Gradient Algorithm in the Four-Dimensional Variational Data Assimilation System in GRAPES 被引量:10
7
作者 Yongzhu LIU Lin ZHANG Zhihua LIAN 《Journal of Meteorological Research》 SCIE CSCD 2018年第6期974-984,共11页
Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lan... Minimization algorithms are singular components in four-dimensional variational data assimilation(4DVar).In this paper,the convergence and application of the conjugate gradient algorithm(CGA),which is based on the Lanczos iterative algorithm and the Hessian matrix derived from tangent linear and adjoint models using a non-hydrostatic framework,are investigated in the 4DVar minimization.First,the influence of the Gram-Schmidt orthogonalization of the Lanczos vector on the convergence of the Lanczos algorithm is studied.The results show that the Lanczos algorithm without orthogonalization fails to converge after the ninth iteration in the 4DVar minimization,while the orthogonalized Lanczos algorithm converges stably.Second,the convergence and computational efficiency of the CGA and quasi-Newton method in batch cycling assimilation experiments are compared on the 4DVar platform of the Global/Regional Assimilation and Prediction System(GRAPES).The CGA is 40%more computationally efficient than the quasi-Newton method,although the equivalent analysis results can be obtained by using either the CGA or the quasi-Newton method.Thus,the CGA based on Lanczos iterations is better for solving the optimization problems in the GRAPES 4DVar system. 展开更多
关键词 numerical weather prediction Global/Regional Assimilation and Prediction System four-dimensional variation conjugate gradient algorithm Lanczos algorithm
原文传递
Direct aperture optimization based on genetic algorithm and conjugate gradient in intensity modulated radiation therapy 被引量:4
8
作者 Cao Ruifen Pei Xi +2 位作者 Zheng Huaqing Hu Liqin Wu Yican 《Chinese Medical Journal》 SCIE CAS CSCD 2014年第23期4152-4153,共2页
For resolving the problem that a conventional intensity modulated radiotherapy(IMRT)plan designed with the"two-step method"-creates a greater number of apertures and total Monitor Units(MU),the direct apertu... For resolving the problem that a conventional intensity modulated radiotherapy(IMRT)plan designed with the"two-step method"-creates a greater number of apertures and total Monitor Units(MU),the direct aperture optimization(DAO)method using a genetic algorithm and conjugate gradient was studied based on Accurate/Advanced Radiation Therapy System(ARTS)developed by the FDS Team(www.fds.org.cn). 展开更多
关键词 direct aperture optimization genetic algorithm conjugate gradient
原文传递
Back-propagation network improved by conjugate gradient based on genetic algorithm in QSAR study on endocrine disrupting chemicals 被引量:7
9
作者 JI Li WANG XiaoDong +2 位作者 YANG XuShu LIU ShuShen WANG LianSheng 《Chinese Science Bulletin》 SCIE EI CAS 2008年第1期33-39,共7页
Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the p... Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals (EDCs). The artificial neural net-works (ANN) are capable of recognizing highly nonlinear relationships, so it will have a bright applica-tion prospect in building high-quality QSAR models. As a popular supervised training algorithm in ANN, back-propagation (BP) converges slowly and immerses in vibration frequently. In this paper, a research strategy that BP neural network was improved by conjugate gradient (CG) algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs. This re-sulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set, q2pred of 0.81 and root-mean-square error (RMSE) of 0.688 for the test set. The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds. 展开更多
关键词 化学药物 内分泌 人造神经网络 遗传算法
在线阅读 下载PDF
An iterative algorithm for solving a class of matrix equations
10
作者 Minghui WANG Yan FENG 《控制理论与应用(英文版)》 EI 2009年第1期68-72,共5页
In this paper, an iterative algorithm is presented to solve the Sylvester and Lyapunov matrix equations. By this iterative algorithm, for any initial matrix X1, a solution X* can be obtained within finite iteration s... In this paper, an iterative algorithm is presented to solve the Sylvester and Lyapunov matrix equations. By this iterative algorithm, for any initial matrix X1, a solution X* can be obtained within finite iteration steps in the absence of roundoff errors. Some examples illustrate that this algorithm is very efficient and better than that of [ 1 ] and [2]. 展开更多
关键词 Iterative algorithm conjugate gradient method Lyapunov matrix equation Sylvester matrix equation
在线阅读 下载PDF
Quasi-physical Algorithm for Protein Folding in an Off-Lattice Model
11
作者 Lü Zhi-Peng HUANG Wen-Qi SHI He 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第1期181-185,共5页
We study a three-dimensional off-lattice protein folding model, which involves two species of residues interacting through Lennard-Jones potentials. By incorporating an extra energy contribution into the original pote... We study a three-dimensional off-lattice protein folding model, which involves two species of residues interacting through Lennard-Jones potentials. By incorporating an extra energy contribution into the original potential function, we replace the original constrained problem with an unconstrained minimization of a mixed potential function. As such an efficient quasi-physical algorithm for solving the protein folding problem is presented. We apply the proposed algorithm to sequences with up to 55 residues and compare the computational results with the putative lowest energy found by several of the most famous algorithms, showing the advantages of our method. The dynamic behavior of the quasi-physlcal algorithm is also discussed. 展开更多
关键词 quasi-physical algorithm conjugate gradient method protein folding off-lattice model
在线阅读 下载PDF
A new three-term spectral conjugate gradient algorithm with higher numerical performance for solving large scale optimization problems based on Quasi-Newton equation
12
作者 Jie Guo Zhong Wan 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第5期234-247,共14页
A new spectral three-term conjugate gradient algorithm in virtue of the Quasi-Newton equation is developed for solving large-scale unconstrained optimization problems.It is proved that the search directions in this al... A new spectral three-term conjugate gradient algorithm in virtue of the Quasi-Newton equation is developed for solving large-scale unconstrained optimization problems.It is proved that the search directions in this algorithm always satisfy a sufficiently descent condition independent of any line search.Global convergence is established for general objective functions if the strong Wolfe line search is used.Numerical experiments are employed to show its high numerical performance in solving large-scale optimization problems.Particularly,the developed algorithm is implemented to solve the 100 benchmark test problems from CUTE with different sizes from 1000 to 10,000,in comparison with some similar ones in the literature.The numerical results demonstrate that our algorithm outperforms the state-of-the-art ones in terms of less CPU time,less number of iteration or less number of function evaluation. 展开更多
关键词 High performance computing optimization algorithm conjugate gradient method convergence analysis
原文传递
Improving the accuracy of heart disease diagnosis with an augmented back propagation algorithm
13
作者 颜红梅 《Journal of Chongqing University》 CAS 2003年第1期31-34,共4页
A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale ... A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis. 展开更多
关键词 multilayer perceptron back propagation algorithm heart disease momentum term adaptive learning rate the forgetting mechanics conjugate gradients method
暂未订购
Study on the Optimization Algorithms for Intensity-Modulated Radiation Therapy
14
作者 LIYong-jie 《Journal of Electronic Science and Technology of China》 2005年第1期95-96,共2页
关键词 intensity-modulated radiotherapy conjugate gradient (CG) method genetic algorithm (GA) segment optimization beam angle optimization expert knowledge
暂未订购
基于LM模型的超大规模影像分布式光束法平差方法
15
作者 郑茂腾 鲁一慧 +6 位作者 朱俊锋 曾晓茹 邱焕斌 江钰尧 卢星月 渠豪 陈能成 《测绘学报》 北大核心 2025年第5期899-910,共12页
针对超大规模数据的整体光束法平差问题,本文提出一种基于LM模型的分布式光束法平差方法。为了解决大规模法方程系数矩阵的存储以及求解运算,利用法方程系数矩阵的稀疏块状特性,使用一种块状稀疏矩阵压缩格式(BSMC)对其进行压缩,该格式... 针对超大规模数据的整体光束法平差问题,本文提出一种基于LM模型的分布式光束法平差方法。为了解决大规模法方程系数矩阵的存储以及求解运算,利用法方程系数矩阵的稀疏块状特性,使用一种块状稀疏矩阵压缩格式(BSMC)对其进行压缩,该格式还支持对法方程系数矩阵的分布式存储和更新。基于上述压缩格式,建立了基于严格LM模型的分布式光束法平差框架,通过对法方程进行分布式构建以及对其他计算复杂度较高的步骤进行并行化设计,实现了对超大规模数据的整体光束法平差。通过对本文方法和国际上同类方法的全面对比试验,初步结果表明,本文方法对内存的需求大幅减少,数据处理容量大幅提升,首次在分布式计算系统上实现对118万张影像的真实数据和1000万张影像的模拟数据(处理的数据量大约是当前基于LM模型最好方法的500倍)的基于LM模型的整体光束法平差。 展开更多
关键词 分布式并行 光束法平差 LM模型 稀疏矩阵压缩 预条件共轭梯度
在线阅读 下载PDF
CONVERGENCE PROPERTIES OF CONJUGATEGRADIENT METHODS WITH STRONG WOLFE LINESEARCH 被引量:5
16
作者 HAN Jiye LIU Guanghui YIN Hongxia(Institute of Applied Mathematics, Academia Silica, Beijing 100080, China) 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1998年第2期112-116,共5页
In this paper, we investigate the convergence property of the conjugate gradientalgorithms which depend on the search directionsby using different choices for the scalar oh, where 9k is the gradient of f at ac. Unders... In this paper, we investigate the convergence property of the conjugate gradientalgorithms which depend on the search directionsby using different choices for the scalar oh, where 9k is the gradient of f at ac. Undersome assumptions which are slightly weaker than those in [1], we prove a global convergenceresult which allows ac to be set in a wider range than that in [1]. 展开更多
关键词 conjugate gradient algorithmS global convergence) UNCONSTRAINED optimization.
在线阅读 下载PDF
基于改进共轭梯度算法的无约束优化求解方法
17
作者 陶思俊 《新余学院学报》 2025年第4期43-47,共5页
提出一种全新的充分下降性迭代算法,其独特之处在于任何线性搜索下都能确保目标函数值下降,在Armijo线性搜索条件下,深入分析了该算法的全局收敛性。通过数值实验,验证了该算法在迭代次数和运行时间方面要优于其他经典方法。
关键词 共轭梯度算法 充分下降性 Armijo线性搜索 数值实验
在线阅读 下载PDF
一种大倾角单独像对相对定向混合算法
18
作者 吴春 段春燕 +2 位作者 胡文焯 张旭 龚睿 《地理空间信息》 2025年第1期21-24,74,共5页
立体像对相对定向是摄影测量三维重建中的重要步骤。为解决初始值不理想导致的相对定向迭代解算不收敛、鲁棒性差的问题,提出了一种大倾角单独像对相对定向的混合算法。首先基于高精度同名像点坐标观测值构建非线性的共面条件方程组,再... 立体像对相对定向是摄影测量三维重建中的重要步骤。为解决初始值不理想导致的相对定向迭代解算不收敛、鲁棒性差的问题,提出了一种大倾角单独像对相对定向的混合算法。首先基于高精度同名像点坐标观测值构建非线性的共面条件方程组,再通过信赖域折线算法进行解算并将方程组解作为后续迭代初始值;最后采用非线性共轭梯度法进行迭代以提高相对定向参数解算精度。无人机航空影像数据集的对比实验结果表明,该算法的相对定向精度可达1μm,具有解算精度高、稳定性好的优点。 展开更多
关键词 相对定向 大倾角 信赖域折线算法 共轭梯度法
在线阅读 下载PDF
利用混沌搜索全局最优的一种混合算法 被引量:62
19
作者 钱富才 费楚红 万百五 《信息与控制》 CSCD 北大核心 1998年第3期232-235,共4页
把共轭梯度法与混沌优化方法相结合,提出了一种混合优化算法.该算法能使共轭梯度法跳出局部最优,最终获得全局最优.算法的收敛性也进行了证明,仿真表明算法是有效的.
关键词 混沌优化 共轭梯度法 全局最优解 算法
在线阅读 下载PDF
复杂地表条件反射振幅一致性校正 被引量:25
20
作者 李生杰 施行觉 +1 位作者 郑鸿明 王宝善 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2002年第6期862-869,共8页
通过对地表一致性数学物理模型的前提条件进行剖析 ,合理地确定了反射振幅一致性校正模型 ,并依据该模型及其实现条件提出使用共轭梯度方法在时间域对地震记录进行谱分解处理 .通过选择复杂地表条件地区的较为典型的地震记录进行资料处... 通过对地表一致性数学物理模型的前提条件进行剖析 ,合理地确定了反射振幅一致性校正模型 ,并依据该模型及其实现条件提出使用共轭梯度方法在时间域对地震记录进行谱分解处理 .通过选择复杂地表条件地区的较为典型的地震记录进行资料处理 ,结果表明 :采用所提出的方法可以有效地校正因复杂地表条件等因素对地震反射振幅而产生的影响 .在复杂地表条件及信噪比较低地区的地震资料处理中 ,该方法具有处理速度快、抗噪能力强及实际应用效果显著的优点 . 展开更多
关键词 反射振幅 复杂地表条件 共轭梯度法 谱分解 信噪比 地震资料处理
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部