A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle ...A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.展开更多
As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many o...As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many optimization problems.In this paper,a non-interior continuation algorithm is proposed for solving the system of inequalities under the order induced by a symmetric cone.It is shown that the proposed algorithm is globally convergent and well-defined.Moreover,it can start from any point and only needs to solve one system of linear equations at most at each iteration.Under suitable assumptions,global linear and local quadratic convergence is established with Euclidean Jordan algebras.Numerical results indicate that the algorithm is efficient.The systems of random linear inequalities were tested over the second-order cones with sizes of 10,100,,1 000 respectively and the problems of each size were generated randomly for 10 times.The average iterative numbers show that the proposed algorithm can generate a solution at one step for solving the given linear class of problems with random initializations.It seems possible that the continuation algorithm can solve larger scale systems of linear inequalities over the secondorder cones quickly.Moreover,a system of nonlinear inequalities was also tested over Cartesian product of two simple second-order cones,and numerical results indicate that the proposed algorithm can deal with the nonlinear cases.展开更多
In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path fo...In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving the P0 function nonlinear complementarity problem (NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving the P0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP.展开更多
It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we pr...It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we propose in this paper a non-interior continuation algorithm for solving the monotone SCCP.The proposed algorithm solves at most one system of linear equations at each iteration.By using the theory of Euclidean Jordan algebras,we show that the algorithm is globally linearly and locally quadratically convergent under suitable assumptions.展开更多
The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity proble...The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity problems. Computable formulas for these functions and their Jacobians are derived. In addition, it is shown that these functions are Lipschitz continuous with respect to parameter # and continuously differentiable on J × J for any μ 〉 0.展开更多
文摘A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
基金Supported by National Natural Science Foundation of China (No.10871144)the Seed Foundation of Tianjin University (No.60302023)
文摘As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many optimization problems.In this paper,a non-interior continuation algorithm is proposed for solving the system of inequalities under the order induced by a symmetric cone.It is shown that the proposed algorithm is globally convergent and well-defined.Moreover,it can start from any point and only needs to solve one system of linear equations at most at each iteration.Under suitable assumptions,global linear and local quadratic convergence is established with Euclidean Jordan algebras.Numerical results indicate that the algorithm is efficient.The systems of random linear inequalities were tested over the second-order cones with sizes of 10,100,,1 000 respectively and the problems of each size were generated randomly for 10 times.The average iterative numbers show that the proposed algorithm can generate a solution at one step for solving the given linear class of problems with random initializations.It seems possible that the continuation algorithm can solve larger scale systems of linear inequalities over the secondorder cones quickly.Moreover,a system of nonlinear inequalities was also tested over Cartesian product of two simple second-order cones,and numerical results indicate that the proposed algorithm can deal with the nonlinear cases.
基金the National Natural Science Foundation of China (Grant Nos. 19871016 and 19731001).
文摘In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving the P0 function nonlinear complementarity problem (NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving the P0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP.
基金supported by the National Natural Science Foundation of China (Grants No.10571134 and 10871144)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC05200)
文摘It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we propose in this paper a non-interior continuation algorithm for solving the monotone SCCP.The proposed algorithm solves at most one system of linear equations at each iteration.By using the theory of Euclidean Jordan algebras,we show that the algorithm is globally linearly and locally quadratically convergent under suitable assumptions.
基金Supported by the Funds of Ministry of Education of China for PhD (20020141013)the NNSF of China (10471015).
文摘The paper uses Euclidean Jordan algebras as a basic tool to extend smoothing functions, which include the Chen-Mangasarian class and the Fischer-Burmeister smoothing functions, to symmetric cone complementarity problems. Computable formulas for these functions and their Jacobians are derived. In addition, it is shown that these functions are Lipschitz continuous with respect to parameter # and continuously differentiable on J × J for any μ 〉 0.