Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for ...Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for short) with NIZK proofs is proposed which can prove and sign the multiple values rather than individual bits based on DLIN assumption. DLAGS does not need to interact between the verifier and issuer,which can decrease the communication times and storage cost compared with the existing interactive group signature schemes. We prove and sign the blocks of messages instead of limiting the proved message to only one bit(0 or 1) in the conventional non-interactive zero-knowledge proof system,and we also prove that our scheme satisfy the property of anonymity,unlinkability and traceability. Finally,our scheme is compared with the other scheme(Benoitt's scheme) which is also based on the NIZK proofs system and the DLIN assumption,and the results show that our scheme requires fewer members of groups and computational times.展开更多
The cloud computing technology has emerged,developed,and matured in recent years,consequently commercializing remote outsourcing storage services.An increasing number of companies and individuals have chosen the cloud...The cloud computing technology has emerged,developed,and matured in recent years,consequently commercializing remote outsourcing storage services.An increasing number of companies and individuals have chosen the cloud to store their data.However,accidents,such as cloud server downtime,cloud data loss,and accidental deletion,are serious issues for some applications that need to run around the clock.For some mission and business-critical applications,the continuous availability of outsourcing storage services is also necessary to protect users'outsourced data during downtime.Nevertheless,ensuring the continuous availability of data in public cloud data integrity auditing protocols leads to data privacy issues because auditors can obtain the data content of users by a sufficient number of storage proofs.Therefore,protecting data privacy is a burning issue.In addition,existing data integrity auditing schemes that rely on semi-trusted third-party auditors have several security problems,including single points of failure and performance bottlenecks.To deal with these issues,we propose herein a blockchain-based continuous data integrity checking protocol with zero-knowledge privacy protection.We realize a concrete construction by using a verifiable delay function with high efficiency and proof of retrievability,and prove the security of the proposal in a random oracle model.The proposed construction supports dynamic updates for the outsourced data.We also design smart contracts to ensure fairness among the parties involved.Finally,we implement the protocols,and the experimental results demonstrate the efficiency of the proposed protocol.展开更多
An identity-based encryption(IBE) was studied with non-interactively opening property that the plain text of a ciphertext can be revealed without affecting the security of the encryption system.Two kinds of non-intera...An identity-based encryption(IBE) was studied with non-interactively opening property that the plain text of a ciphertext can be revealed without affecting the security of the encryption system.Two kinds of non-interactive opening properties for IBE schemes were defined along with a concrete scheme in each case.展开更多
A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technolog...A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technology to alleviate asymmetry of information in the asset-backed securitization market.To frame this inquiry,we conducted market data analyses,a review of prior literature,stakeholder interviews with investors,originators and security issuers and collaboration with blockchain engineers and researchers.We introduce a new system which could enable all market participants in the securitization lifecycle(e.g.investors,rating agencies,regulators and security issuers)to interact on a unique decentralized platform while maintaining the privacy of loan-level data,therefore providing the industry with timely analytics and performance data.Our platform is powered by zkLedger(Narula et al.2018),a zero-knowledge protocol developed by the MIT Media Lab and the first system that enables participants of a distributed ledger to run publicly verifiable analytics on masked data.展开更多
Precise zero-knowledge was introduced by Micali and Pass in STOC06. This notion captures the idea that the view of a verifier can be reconstructed in almost same time. Following the notion, they constructed some preci...Precise zero-knowledge was introduced by Micali and Pass in STOC06. This notion captures the idea that the view of a verifier can be reconstructed in almost same time. Following the notion, they constructed some precise zero-knowledge proofs and arguments, in which the communicated messages are polynomial bits. In this paper, we employ the new simulation technique introduced by them to provide a precise simulator for a modified Kilian's zero-knowledge arguments with poly-logarithmic efficiency (this modification addressed by Rosen), and as a result we show this protocol is a precise zero-knowledge argument with poly-logaxithmic efficiency. We also present an alternative construction of the desired protocols.展开更多
Precise zero-knowledge was introduced by Micali and Pass in STOC'06.This notion captures the idea that the view of any verifier in interaction can be reconstructed in almost time.Pass also obtained a sequential co...Precise zero-knowledge was introduced by Micali and Pass in STOC'06.This notion captures the idea that the view of any verifier in interaction can be reconstructed in almost time.Pass also obtained a sequential composition lemma for precise zero-knowledge protocols.However,this lemma doesn't provide tight precisions for composed protocols.In this paper we further obtain a sequential composition lemma for a subclass of precise zero-knowledge protocols,which all satisfy a property:their simulators use the code of verifier in almost the black-box way.We call such subclass emulated black-box zero-knowledge protocols.Our lemma provides better precisions for sequential composition of such protocols.展开更多
Commitment scheme is a basic component of many cryptographic protocols, such as coin-tossing, identification schemes, zero-knowledge and multi-party computation. In order to prevent man-in-middle attacks, non-malleabi...Commitment scheme is a basic component of many cryptographic protocols, such as coin-tossing, identification schemes, zero-knowledge and multi-party computation. In order to prevent man-in-middle attacks, non-malleability is taken into account. Many forming works focus on designing non-malleable commitments schemes based on number theory assumptions. In this paper we give a general framework to construct non- interactive and non-malleable commitment scheme with respect to opening based on more general assumptions called q-one way group homomorphisms (q-OWGH). Our scheme is more general since many existing commitment schemes can be deduced from our scheme.展开更多
Since transactions in blockchain are based on public ledger verification,this raises security concerns about privacy protection.And it will cause the accumulation of data on the chain and resulting in the low efficien...Since transactions in blockchain are based on public ledger verification,this raises security concerns about privacy protection.And it will cause the accumulation of data on the chain and resulting in the low efficiency of block verification,when the whole transaction on the chain is verified.In order to improve the efficiency and privacy protection of block data verification,this paper proposes an efficient block verification mechanism with privacy protection based on zeroknowledge proof(ZKP),which not only protects the privacy of users but also improves the speed of data block verification.There is no need to put the whole transaction on the chain when verifying block data.It just needs to generate the ZKP and root hash with the transaction information,then save them to the smart contract for verification.Moreover,the ZKP verification in smart contract is carried out to realize the privacy protection of the transaction and efficient verification of the block.When the data is validated,the buffer accepts the complete transaction,updates the transaction status in the cloud database,and packages up the chain.So,the ZKP strengthens the privacy protection ability of blockchain,and the smart contracts save the time cost of block verification.展开更多
This study examined the influence that the mere presence of others (i.e., non-interactive) has on the decision-making speed of individuals. The study compared four conditions: a participant executing a given task b...This study examined the influence that the mere presence of others (i.e., non-interactive) has on the decision-making speed of individuals. The study compared four conditions: a participant executing a given task by himself or herself, or with another person next to him or her and executing the same task either quickly, at a normal speed, or at a slow speed. The results of these comparisons showed that when the other person made decisions quickly, a participant's decision-making sped up to align with that of the other person. Interestingly, even when a participant's decision-making speed was accelerated under the influence of the other person's decision-making speed, there appeared to be no difference in the participant's degree of satisfaction with the results, compared to when making decisions at his or her own pace. Furthermore, the study results showed that the physical presence of another person was essential to transmitting decision-making speed: transmission did not occur after attempts were made to manipulate speed solely through the use of artificial sound.展开更多
Based on the analysis of the existing ranking terminology or subject relevancy of documents methods through an intermediary collection as a catalyst(designated as Group B collection) for the purpose of of non-interact...Based on the analysis of the existing ranking terminology or subject relevancy of documents methods through an intermediary collection as a catalyst(designated as Group B collection) for the purpose of of non-interactive literature-based discovery, this article proposes a bi-directional document occurrence frequency based ranking method according to the 'concurrence theory' and the degree and extent of the subject relevancy. This method explores and further refines the ranking method that is based on the occurrence frequency of the usage of certain terminologies and documents and injects a new insightful perspective of the concurrence of appropriate terminologies/documents in the 'low occurrence frequency component' of three non-interactive document collections. A preliminary experiment was conducted to analyze and to test the significance and viability of our newly designed operational method.展开更多
The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital ...The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital identity verification.This paper proposes a quantum-resilient,blockchain-based identity verification framework designed to address critical challenges in privacy preservation,scalability,and post-quantum security.The proposed model integrates Post-quantum Cryptography(PQC),specifically lattice-based cryptographic primitives,with Decentralized Identifiers(DIDs)and Zero-knowledge Proofs(ZKPs)to ensure verifiability,anonymity,and resistance to quantum attacks.A dual-layer architecture is introduced,comprising an identity layer for credential generation and validation,and an application layer for DeFi protocol integration.To evaluate its performance,the framework is tested on multiple real-world DeFi platforms using metrics such as verification latency,throughput,attack resistance,energy efficiency,and quantum attack simulation.The results demonstrate that the proposed framework achieves 90%latency reduction and over 35%throughput improvement compared to traditional blockchain identity solutions.It also exhibits a high quantum resistance score(95/100),with successful secure verification under simulated quantum adversaries.The revocation mechanism—implemented using Merkle-tree-based proofs—achieves average response times under 40 ms,and the system maintains secure operations with energy consumption below 9 J per authentication cycle.Additionally,the paper presents a security and cost tradeoff analysis using ZKP schemes such as Bulletproofs and STARKs,revealing superior bits-per-byte efficiency and reduced proof sizes.Real-world adoption scenarios,including integration with six major DeFi protocols,indicate a 25%increase in verified users and a 15%improvement in Total Value Locked(TVL).The proposed solution is projected to remain secure until 2041(basic version)and 2043(advanced version),ensuring long-term sustainability and future-proofing against evolving quantum threats.This work establishes a scalable,privacy-preserving identity model that aligns with emerging post-quantum security standards for decentralized ecosystems.展开更多
The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are ...The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are vulnerable to malicious attacks.Although numerous researchers have proposed authentication schemes to enhance the security of Vehicle-to-Vehicle(V2V)communication,most existing methodologies face two significant challenges:(1)the majority of the schemes are not lightweight enough to support realtime message interaction among vehicles;(2)the sensitive information like identity and position is at risk of being compromised.To tackle these issues,we propose a lightweight dual authentication protocol for V2V communication based on Physical Unclonable Function(PUF).The proposed scheme accomplishes dual authentication between vehicles by the combination of Zero-Knowledge Proof(ZKP)and MASK function.The security analysis proves that our scheme provides both anonymous authentication and information unlinkability.Additionally,the performance analysis demonstrates that the computation overhead of our scheme is approximately reduced 23.4% compared to the state-of-the-art schemes.The practical simulation conducted in a 6G network environment demonstrates the feasibility of 6G-based VANETs and their potential for future advancements.展开更多
In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potentia...In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potential depends on the density only,the individual parts,the Pauli kinetic energy and the exchange-correlation energy,however,are orbital dependent and as such mutually influence each other.The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy.The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the orderof a few Hartrees.For chemical purposes,however,the energetic performance as a function of the nuclear coordinates is much more important than total energies.Therefore,the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide.The data reveals that,the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances.Therefore,the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.展开更多
The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and varia...The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and variable nature of its network topology,vehicles frequently engage in cross-domain interactions.During such processes,directly uploading sensitive information to roadside units for interaction may expose it to malicious tampering or interception by attackers,thus compromising the security of the cross-domain authentication process.Additionally,IoV imposes high real-time requirements,and existing cross-domain authentication schemes for IoV often encounter efficiency issues.To mitigate these challenges,we propose CAIoV,a blockchain-based efficient cross-domain authentication scheme for IoV.This scheme comprehensively integrates technologies such as zero-knowledge proofs,smart contracts,and Merkle hash tree structures.It divides the cross-domain process into anonymous cross-domain authentication and safe cross-domain authentication phases to ensure efficiency while maintaining a balance between efficiency and security.Finally,we evaluate the performance of CAIoV.Experimental results demonstrate that our proposed scheme reduces computational overhead by approximately 20%,communication overhead by around 10%,and storage overhead by nearly 30%.展开更多
Data is regarded as a valuable asset,and sharing data is a prerequisite for fully exploiting the value of data.However,the current medical data sharing scheme lacks a fair incentive mechanism,and the authenticity of d...Data is regarded as a valuable asset,and sharing data is a prerequisite for fully exploiting the value of data.However,the current medical data sharing scheme lacks a fair incentive mechanism,and the authenticity of data cannot be guaranteed,resulting in low enthusiasm of participants.A fair and trusted medical data trading scheme based on smart contracts is proposed,which aims to encourage participants to be honest and improve their enthusiasm for participation.The scheme uses zero-knowledge range proof for trusted verification,verifies the authenticity of the patient’s data and the specific attributes of the data before the transaction,and realizes privacy protection.At the same time,the game pricing strategy selects the best revenue strategy for all parties involved and realizes the fairness and incentive of the transaction price.The smart contract is used to complete the verification and game bargaining process,and the blockchain is used as a distributed ledger to record the medical data transaction process to prevent data tampering and transaction denial.Finally,by deploying smart contracts on the Ethereum test network and conducting experiments and theoretical calculations,it is proved that the transaction scheme achieves trusted verification and fair bargaining while ensuring privacy protection in a decentralized environment.The experimental results show that the model improves the credibility and fairness of medical data transactions,maximizes social benefits,encourages more patients and medical institutions to participate in the circulation of medical data,and more fully taps the potential value of medical data.展开更多
With the development of Internet of Things technology,intelligent door lock devices are widely used in the field of house leasing.In the traditional housing leasing scenario,problems of door lock information disclosur...With the development of Internet of Things technology,intelligent door lock devices are widely used in the field of house leasing.In the traditional housing leasing scenario,problems of door lock information disclosure,tenant privacy disclosure and rental contract disputes frequently occur,and the security,fairness and auditability of the housing leasing transaction cannot be guaranteed.To solve the above problems,a blockchain-based proxy re-encryption scheme with conditional privacy protection and auditability is proposed.The scheme implements fine-grained access control of door lock data based on attribute encryption technology with policy hiding,and uses proxy re-encryption technology to achieve auditable supervision of door lock information transactions.Homomorphic encryption technology and zero-knowledge proof technology are introduced to ensure the confidentiality of housing rent information and the fairness of rent payment.To construct a decentralized housing lease transaction architecture,the scheme realizes the efficient collaboration between the door lock data ciphertext stored under the chain and the key information ciphertext on the chain based on the blockchain and InterPlanetary File System.Finally,the security proof and computing performance analysis of the proposed scheme are carried out.The results show that the scheme can resist the chosen plaintext attack and has low computational cost.展开更多
The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among th...The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants.展开更多
A delegateable signature scheme (DSS) which was first introduced by Barak is mainly based on the non-interactive zero-knowledge proof (NIZK) for preventing the signing verifier from telling which witness (i.e., r...A delegateable signature scheme (DSS) which was first introduced by Barak is mainly based on the non-interactive zero-knowledge proof (NIZK) for preventing the signing verifier from telling which witness (i.e., restricted subset) is being used. However, the scheme is not significantly efficient due to the difficulty of constructing NIZK. We first show that a non-interactive witness indistinguishable (NlWl) proof system and a non-interactive witness hiding (NIWH) proof system are easier and more efficient proof models than NIZK in some cases. Furthermore, the witnesses em- ployed in these two protocols (NlWl and NIWT) cannot also be distinguished by the verifiers. Combined with the E-protocol, we then construct NlWl and NIWH proofs for any NP statement under the existence of one-way functions and show that each proof is different from those under the existence of trapdoor permutations, Finally, based on our NlWl and NIWH proofs, we construct delegateable signature schemes under the existence of one-way functions, which are more efficient than Barak's scheme under the existence of trapdoor permutations.展开更多
The blockchain technology has been applied to wide areas.However,the open and transparent properties of the blockchains pose serious challenges to users’privacy.Among all the schemes for the privacy protection,the ze...The blockchain technology has been applied to wide areas.However,the open and transparent properties of the blockchains pose serious challenges to users’privacy.Among all the schemes for the privacy protection,the zero-knowledge proof algorithm conceals most of the private information in a transaction,while participants of the blockchain can validate this transaction without the private information.However,current schemes are only aimed at blockchains with the UTXO model,and only one type of assets circulates on these blockchains.Based on the zero-knowledge proof algorithm,this paper proposes a privacy protection scheme for blockchains that use the account and multi-asset model.We design the transaction structure,anonymous addresses and anonymous asset metadata,and also propose the methods of the asset transfer and double-spending detection.The zk-SNARKs algorithm is used to generate and to verify the zero-knowledge proof.And finally,we conduct the experiments to evaluate our scheme.展开更多
This paper considers the existence of 3-round zero-knowledge proof systems for NP. Whether there exist 3-round non-black-box zero-knowledge proof systems for NP language is an open problem. By introducing a new intera...This paper considers the existence of 3-round zero-knowledge proof systems for NP. Whether there exist 3-round non-black-box zero-knowledge proof systems for NP language is an open problem. By introducing a new interactive proof model, we construct a 3-round zero-knowledge proof system for graph 3-coloring under standard assumptions. Our protocol is a non-black-box zero-knowledge proof because we adopt a special strategy to prove the zero-knowledge property. Consequently, our construction shows the existence of 3-round non-black-box zero-knowledge proof for all languages in NP under the DDH assumption.展开更多
基金supported by the National High-Tech Research and Development Plan of China under Grant Nos.863-317-01- 04-99, 2009AA01Z122 (863)the Natural Science Foundation of Shenyang City of China under Grant No. F10-205-1-12
文摘Non-Interactive Zero-Knowledge(NIZK for short) proofs are fascinating and extremely useful in many security protocols. In this paper,a new group signature scheme,decisional linear assumption group signature(DLAGS for short) with NIZK proofs is proposed which can prove and sign the multiple values rather than individual bits based on DLIN assumption. DLAGS does not need to interact between the verifier and issuer,which can decrease the communication times and storage cost compared with the existing interactive group signature schemes. We prove and sign the blocks of messages instead of limiting the proved message to only one bit(0 or 1) in the conventional non-interactive zero-knowledge proof system,and we also prove that our scheme satisfy the property of anonymity,unlinkability and traceability. Finally,our scheme is compared with the other scheme(Benoitt's scheme) which is also based on the NIZK proofs system and the DLIN assumption,and the results show that our scheme requires fewer members of groups and computational times.
基金This work is supported by the National Natural Science Foundation of China(61872229,U19B2021)the Shaanxi Provincial Science Fund for Distinguished Young Scholars(2022JC-47)+1 种基金the Blockchain Core Technology Strategic Research Program of Ministry of Education of China(2020KJ010301)the Key Research and Development Program of Shaanxi(2021ZDLGY06-04,2020ZDLGY09-06).
文摘The cloud computing technology has emerged,developed,and matured in recent years,consequently commercializing remote outsourcing storage services.An increasing number of companies and individuals have chosen the cloud to store their data.However,accidents,such as cloud server downtime,cloud data loss,and accidental deletion,are serious issues for some applications that need to run around the clock.For some mission and business-critical applications,the continuous availability of outsourcing storage services is also necessary to protect users'outsourced data during downtime.Nevertheless,ensuring the continuous availability of data in public cloud data integrity auditing protocols leads to data privacy issues because auditors can obtain the data content of users by a sufficient number of storage proofs.Therefore,protecting data privacy is a burning issue.In addition,existing data integrity auditing schemes that rely on semi-trusted third-party auditors have several security problems,including single points of failure and performance bottlenecks.To deal with these issues,we propose herein a blockchain-based continuous data integrity checking protocol with zero-knowledge privacy protection.We realize a concrete construction by using a verifiable delay function with high efficiency and proof of retrievability,and prove the security of the proposal in a random oracle model.The proposed construction supports dynamic updates for the outsourced data.We also design smart contracts to ensure fairness among the parties involved.Finally,we implement the protocols,and the experimental results demonstrate the efficiency of the proposed protocol.
文摘An identity-based encryption(IBE) was studied with non-interactively opening property that the plain text of a ciphertext can be revealed without affecting the security of the encryption system.Two kinds of non-interactive opening properties for IBE schemes were defined along with a concrete scheme in each case.
基金We received funding solely from our institution to perform this research.
文摘A zero-knowledge proof or protocol is a cryptographic technique for verifying private data without revealing it in its clear form.In this paper,we evaluate the potential for zero-knowledge distributed ledger technology to alleviate asymmetry of information in the asset-backed securitization market.To frame this inquiry,we conducted market data analyses,a review of prior literature,stakeholder interviews with investors,originators and security issuers and collaboration with blockchain engineers and researchers.We introduce a new system which could enable all market participants in the securitization lifecycle(e.g.investors,rating agencies,regulators and security issuers)to interact on a unique decentralized platform while maintaining the privacy of loan-level data,therefore providing the industry with timely analytics and performance data.Our platform is powered by zkLedger(Narula et al.2018),a zero-knowledge protocol developed by the MIT Media Lab and the first system that enables participants of a distributed ledger to run publicly verifiable analytics on masked data.
基金the National Natural Science Foundation of China (No.60573031)New Century Excellent Talent Program of Education Ministry of China (No.NCET-05-0398)
文摘Precise zero-knowledge was introduced by Micali and Pass in STOC06. This notion captures the idea that the view of a verifier can be reconstructed in almost same time. Following the notion, they constructed some precise zero-knowledge proofs and arguments, in which the communicated messages are polynomial bits. In this paper, we employ the new simulation technique introduced by them to provide a precise simulator for a modified Kilian's zero-knowledge arguments with poly-logarithmic efficiency (this modification addressed by Rosen), and as a result we show this protocol is a precise zero-knowledge argument with poly-logaxithmic efficiency. We also present an alternative construction of the desired protocols.
基金the National Natural Science Foundation of China (No. 60573031)the New Century Excellent Talent Program of Education Ministry of China(NCET-05-0398)
文摘Precise zero-knowledge was introduced by Micali and Pass in STOC'06.This notion captures the idea that the view of any verifier in interaction can be reconstructed in almost time.Pass also obtained a sequential composition lemma for precise zero-knowledge protocols.However,this lemma doesn't provide tight precisions for composed protocols.In this paper we further obtain a sequential composition lemma for a subclass of precise zero-knowledge protocols,which all satisfy a property:their simulators use the code of verifier in almost the black-box way.We call such subclass emulated black-box zero-knowledge protocols.Our lemma provides better precisions for sequential composition of such protocols.
基金the National Natural Science Foundations of China (Nos. 60673079 and 60572155)
文摘Commitment scheme is a basic component of many cryptographic protocols, such as coin-tossing, identification schemes, zero-knowledge and multi-party computation. In order to prevent man-in-middle attacks, non-malleability is taken into account. Many forming works focus on designing non-malleable commitments schemes based on number theory assumptions. In this paper we give a general framework to construct non- interactive and non-malleable commitment scheme with respect to opening based on more general assumptions called q-one way group homomorphisms (q-OWGH). Our scheme is more general since many existing commitment schemes can be deduced from our scheme.
基金This work was supported by China’s National Natural Science Foundation(No.62072249,62072056).Jin Wang and Yongjun Ren received the grant and the URLs to sponsors’websites are https://www.nsfc.gov.cn/.This work was also funded by the Researchers Supporting Project No.(RSP-2021/102)King Saud University,Riyadh,Saudi Arabia.
文摘Since transactions in blockchain are based on public ledger verification,this raises security concerns about privacy protection.And it will cause the accumulation of data on the chain and resulting in the low efficiency of block verification,when the whole transaction on the chain is verified.In order to improve the efficiency and privacy protection of block data verification,this paper proposes an efficient block verification mechanism with privacy protection based on zeroknowledge proof(ZKP),which not only protects the privacy of users but also improves the speed of data block verification.There is no need to put the whole transaction on the chain when verifying block data.It just needs to generate the ZKP and root hash with the transaction information,then save them to the smart contract for verification.Moreover,the ZKP verification in smart contract is carried out to realize the privacy protection of the transaction and efficient verification of the block.When the data is validated,the buffer accepts the complete transaction,updates the transaction status in the cloud database,and packages up the chain.So,the ZKP strengthens the privacy protection ability of blockchain,and the smart contracts save the time cost of block verification.
文摘This study examined the influence that the mere presence of others (i.e., non-interactive) has on the decision-making speed of individuals. The study compared four conditions: a participant executing a given task by himself or herself, or with another person next to him or her and executing the same task either quickly, at a normal speed, or at a slow speed. The results of these comparisons showed that when the other person made decisions quickly, a participant's decision-making sped up to align with that of the other person. Interestingly, even when a participant's decision-making speed was accelerated under the influence of the other person's decision-making speed, there appeared to be no difference in the participant's degree of satisfaction with the results, compared to when making decisions at his or her own pace. Furthermore, the study results showed that the physical presence of another person was essential to transmitting decision-making speed: transmission did not occur after attempts were made to manipulate speed solely through the use of artificial sound.
基金supported by Humanities and Social Science Foundation of Ministry of Education of China(Grant No.07JA870005)
文摘Based on the analysis of the existing ranking terminology or subject relevancy of documents methods through an intermediary collection as a catalyst(designated as Group B collection) for the purpose of of non-interactive literature-based discovery, this article proposes a bi-directional document occurrence frequency based ranking method according to the 'concurrence theory' and the degree and extent of the subject relevancy. This method explores and further refines the ranking method that is based on the occurrence frequency of the usage of certain terminologies and documents and injects a new insightful perspective of the concurrence of appropriate terminologies/documents in the 'low occurrence frequency component' of three non-interactive document collections. A preliminary experiment was conducted to analyze and to test the significance and viability of our newly designed operational method.
文摘The rapid evolution of quantum computing poses significant threats to traditional cryptographic schemes,particularly in Decentralized Finance(DeFi)systems that rely on legacy mechanisms like RSA and ECDSA for digital identity verification.This paper proposes a quantum-resilient,blockchain-based identity verification framework designed to address critical challenges in privacy preservation,scalability,and post-quantum security.The proposed model integrates Post-quantum Cryptography(PQC),specifically lattice-based cryptographic primitives,with Decentralized Identifiers(DIDs)and Zero-knowledge Proofs(ZKPs)to ensure verifiability,anonymity,and resistance to quantum attacks.A dual-layer architecture is introduced,comprising an identity layer for credential generation and validation,and an application layer for DeFi protocol integration.To evaluate its performance,the framework is tested on multiple real-world DeFi platforms using metrics such as verification latency,throughput,attack resistance,energy efficiency,and quantum attack simulation.The results demonstrate that the proposed framework achieves 90%latency reduction and over 35%throughput improvement compared to traditional blockchain identity solutions.It also exhibits a high quantum resistance score(95/100),with successful secure verification under simulated quantum adversaries.The revocation mechanism—implemented using Merkle-tree-based proofs—achieves average response times under 40 ms,and the system maintains secure operations with energy consumption below 9 J per authentication cycle.Additionally,the paper presents a security and cost tradeoff analysis using ZKP schemes such as Bulletproofs and STARKs,revealing superior bits-per-byte efficiency and reduced proof sizes.Real-world adoption scenarios,including integration with six major DeFi protocols,indicate a 25%increase in verified users and a 15%improvement in Total Value Locked(TVL).The proposed solution is projected to remain secure until 2041(basic version)and 2043(advanced version),ensuring long-term sustainability and future-proofing against evolving quantum threats.This work establishes a scalable,privacy-preserving identity model that aligns with emerging post-quantum security standards for decentralized ecosystems.
文摘The advancement of 6G wireless communication technology has facilitated the integration of Vehicular Ad-hoc Networks(VANETs).However,the messages transmitted over the public channel in the open and dynamic VANETs are vulnerable to malicious attacks.Although numerous researchers have proposed authentication schemes to enhance the security of Vehicle-to-Vehicle(V2V)communication,most existing methodologies face two significant challenges:(1)the majority of the schemes are not lightweight enough to support realtime message interaction among vehicles;(2)the sensitive information like identity and position is at risk of being compromised.To tackle these issues,we propose a lightweight dual authentication protocol for V2V communication based on Physical Unclonable Function(PUF).The proposed scheme accomplishes dual authentication between vehicles by the combination of Zero-Knowledge Proof(ZKP)and MASK function.The security analysis proves that our scheme provides both anonymous authentication and information unlinkability.Additionally,the performance analysis demonstrates that the computation overhead of our scheme is approximately reduced 23.4% compared to the state-of-the-art schemes.The practical simulation conducted in a 6G network environment demonstrates the feasibility of 6G-based VANETs and their potential for future advancements.
基金The project was supported by the Fund for Scientific Research in Flanders (FWO-Vlaanderen) for Research Grant G021115N.
文摘In this work it is shown that the kinetic energy and the exchange-correlation energy are mutual dependent on each other.This aspect is first derived in an orbital-free context.It is shown that the total Fermi potential depends on the density only,the individual parts,the Pauli kinetic energy and the exchange-correlation energy,however,are orbital dependent and as such mutually influence each other.The numerical investigation is performed for the orbital-based non-interacting Kohn-Sham system in order to avoid additional effects due to further approximations of the kinetic energy.The numerical influence of the exchange-correlation functional on the non-interacting kinetic energy is shown to be of the orderof a few Hartrees.For chemical purposes,however,the energetic performance as a function of the nuclear coordinates is much more important than total energies.Therefore,the effect on the bond dissociation curve was studied exemplarily for the carbon monoxide.The data reveals that,the mutual influence between the exchange-correlation functional and the kinetic energy has a significant influence on bond dissociation energies and bond distances.Therefore,the effect of the exchange-correlation treatment must be considered in the design of orbital-free density functional approximations for the kinetic energy.
基金supported by the National Natural Science Foundation of China(62362013)the Guangxi Natural Science Foundation(2023GXNSFAA026294).
文摘The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and variable nature of its network topology,vehicles frequently engage in cross-domain interactions.During such processes,directly uploading sensitive information to roadside units for interaction may expose it to malicious tampering or interception by attackers,thus compromising the security of the cross-domain authentication process.Additionally,IoV imposes high real-time requirements,and existing cross-domain authentication schemes for IoV often encounter efficiency issues.To mitigate these challenges,we propose CAIoV,a blockchain-based efficient cross-domain authentication scheme for IoV.This scheme comprehensively integrates technologies such as zero-knowledge proofs,smart contracts,and Merkle hash tree structures.It divides the cross-domain process into anonymous cross-domain authentication and safe cross-domain authentication phases to ensure efficiency while maintaining a balance between efficiency and security.Finally,we evaluate the performance of CAIoV.Experimental results demonstrate that our proposed scheme reduces computational overhead by approximately 20%,communication overhead by around 10%,and storage overhead by nearly 30%.
基金This research was funded by the Natural Science Foundation of Hebei Province(F2021201052)。
文摘Data is regarded as a valuable asset,and sharing data is a prerequisite for fully exploiting the value of data.However,the current medical data sharing scheme lacks a fair incentive mechanism,and the authenticity of data cannot be guaranteed,resulting in low enthusiasm of participants.A fair and trusted medical data trading scheme based on smart contracts is proposed,which aims to encourage participants to be honest and improve their enthusiasm for participation.The scheme uses zero-knowledge range proof for trusted verification,verifies the authenticity of the patient’s data and the specific attributes of the data before the transaction,and realizes privacy protection.At the same time,the game pricing strategy selects the best revenue strategy for all parties involved and realizes the fairness and incentive of the transaction price.The smart contract is used to complete the verification and game bargaining process,and the blockchain is used as a distributed ledger to record the medical data transaction process to prevent data tampering and transaction denial.Finally,by deploying smart contracts on the Ethereum test network and conducting experiments and theoretical calculations,it is proved that the transaction scheme achieves trusted verification and fair bargaining while ensuring privacy protection in a decentralized environment.The experimental results show that the model improves the credibility and fairness of medical data transactions,maximizes social benefits,encourages more patients and medical institutions to participate in the circulation of medical data,and more fully taps the potential value of medical data.
基金supported by National Key Research and Development Project(No.2020YFB1005500)Beijing Natural Science Foundation Project(No.M21034)。
文摘With the development of Internet of Things technology,intelligent door lock devices are widely used in the field of house leasing.In the traditional housing leasing scenario,problems of door lock information disclosure,tenant privacy disclosure and rental contract disputes frequently occur,and the security,fairness and auditability of the housing leasing transaction cannot be guaranteed.To solve the above problems,a blockchain-based proxy re-encryption scheme with conditional privacy protection and auditability is proposed.The scheme implements fine-grained access control of door lock data based on attribute encryption technology with policy hiding,and uses proxy re-encryption technology to achieve auditable supervision of door lock information transactions.Homomorphic encryption technology and zero-knowledge proof technology are introduced to ensure the confidentiality of housing rent information and the fairness of rent payment.To construct a decentralized housing lease transaction architecture,the scheme realizes the efficient collaboration between the door lock data ciphertext stored under the chain and the key information ciphertext on the chain based on the blockchain and InterPlanetary File System.Finally,the security proof and computing performance analysis of the proposed scheme are carried out.The results show that the scheme can resist the chosen plaintext attack and has low computational cost.
基金supported by the National Key R&D Program of China(No.2022YFB3103400)the National Natural Science Foundation of China under Grants 61932015 and 62172317.
文摘The dynamic landscape of the Internet of Things(IoT)is set to revolutionize the pace of interaction among entities,ushering in a proliferation of applications characterized by heightened quality and diversity.Among the pivotal applications within the realm of IoT,as a significant example,the Smart Grid(SG)evolves into intricate networks of energy deployment marked by data integration.This evolution concurrently entails data interchange with other IoT entities.However,there are also several challenges including data-sharing overheads and the intricate establishment of trusted centers in the IoT ecosystem.In this paper,we introduce a hierarchical secure data-sharing platform empowered by cloud-fog integration.Furthermore,we propose a novel non-interactive zero-knowledge proof-based group authentication and key agreement protocol that supports one-to-many sharing sets of IoT data,especially SG data.The security formal verification tool shows that the proposed scheme can achieve mutual authentication and secure data sharing while protecting the privacy of data providers.Compared with previous IoT data sharing schemes,the proposed scheme has advantages in both computational and transmission efficiency,and has more superiority with the increasing volume of shared data or increasing number of participants.
基金Supported partially by the National Natural Science Foundation of China(Grant Nos.90604034,10371127 and 10671114)
文摘A delegateable signature scheme (DSS) which was first introduced by Barak is mainly based on the non-interactive zero-knowledge proof (NIZK) for preventing the signing verifier from telling which witness (i.e., restricted subset) is being used. However, the scheme is not significantly efficient due to the difficulty of constructing NIZK. We first show that a non-interactive witness indistinguishable (NlWl) proof system and a non-interactive witness hiding (NIWH) proof system are easier and more efficient proof models than NIZK in some cases. Furthermore, the witnesses em- ployed in these two protocols (NlWl and NIWT) cannot also be distinguished by the verifiers. Combined with the E-protocol, we then construct NlWl and NIWH proofs for any NP statement under the existence of one-way functions and show that each proof is different from those under the existence of trapdoor permutations, Finally, based on our NlWl and NIWH proofs, we construct delegateable signature schemes under the existence of one-way functions, which are more efficient than Barak's scheme under the existence of trapdoor permutations.
基金supported by National Natural Science Foundation of China(61672499,61772502)Key Special Project of Beijing Municipal Science&Technology Commission(Z181100003218018)+1 种基金Natural Science Foundation of Inner Mongolia,Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications,SKLNST-2016-2-09)SV-ICT Blockchain&DAPP Joint Lab
文摘The blockchain technology has been applied to wide areas.However,the open and transparent properties of the blockchains pose serious challenges to users’privacy.Among all the schemes for the privacy protection,the zero-knowledge proof algorithm conceals most of the private information in a transaction,while participants of the blockchain can validate this transaction without the private information.However,current schemes are only aimed at blockchains with the UTXO model,and only one type of assets circulates on these blockchains.Based on the zero-knowledge proof algorithm,this paper proposes a privacy protection scheme for blockchains that use the account and multi-asset model.We design the transaction structure,anonymous addresses and anonymous asset metadata,and also propose the methods of the asset transfer and double-spending detection.The zk-SNARKs algorithm is used to generate and to verify the zero-knowledge proof.And finally,we conduct the experiments to evaluate our scheme.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60573052 and 90304013)
文摘This paper considers the existence of 3-round zero-knowledge proof systems for NP. Whether there exist 3-round non-black-box zero-knowledge proof systems for NP language is an open problem. By introducing a new interactive proof model, we construct a 3-round zero-knowledge proof system for graph 3-coloring under standard assumptions. Our protocol is a non-black-box zero-knowledge proof because we adopt a special strategy to prove the zero-knowledge property. Consequently, our construction shows the existence of 3-round non-black-box zero-knowledge proof for all languages in NP under the DDH assumption.