期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
1
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-ii
在线阅读 下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
2
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
在线阅读 下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm 被引量:2
3
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using non-dominated sorting genetic algorithm-II 被引量:3
4
作者 Sunil Dhingra Gian Bhushan Kashyap Kumar Dubey 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第1期81-94,共14页
The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response su... The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi- objective optimization problem is formulated. Non- dominated sorting genetic algorithm-II is used in predict- ing the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine outputand emission parameters depending upon their own requirements. 展开更多
关键词 jatropha biodiesel fuel properties responsesurface methodology multi-objective optimization non-dominated sorting genetic algorithm-ii
原文传递
Satellite constellation design with genetic algorithms based on system performance
5
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
6
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSGAii) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
基于SLP与NSGA-II的KF公司通用阀车间布局优化
7
作者 陈洪鑫 《科技和产业》 2025年第13期40-50,共11页
针对因KF公司通用阀车间布局不合理而导致物料搬运交叉多、搬运成本高、面积利用率低等问题,构建考虑物料顺、逆流动方向的,以最小化物料搬运成本、最大化非物流关系和车间面积利用率为目标的布局优化模型。运用系统布置设计(SLP)方法... 针对因KF公司通用阀车间布局不合理而导致物料搬运交叉多、搬运成本高、面积利用率低等问题,构建考虑物料顺、逆流动方向的,以最小化物料搬运成本、最大化非物流关系和车间面积利用率为目标的布局优化模型。运用系统布置设计(SLP)方法对车间布局进行优化得到初步布局方案。在传统非支配排序遗传算法(NSGA-II)的基础上,为提高算法初始种群的多样性将SLP方法得到的初步布局方案编码作为初始种群的一部分,将自适应控制策略引入交叉、变异操作中,并加入模拟退火算法。最后使用层次分析法(AHP)对算法得到的一组Pareto最优解集进行优化方案决策。结果表明,此方法能使物料搬运成本减少38.83%,非物流关系增加了44.83%,车间面积利用率优化了19.50%,证明了该模型在车间布局优化时的有效性。 展开更多
关键词 车间布局 多目标优化 NSGA-ii(非支配排序遗传算法) SLP(系统布置设计)
在线阅读 下载PDF
基于NSGA-II的UPQC多目标PI控制器参数优化研究
8
作者 黄雄 吴天杰 +4 位作者 陈锐忠 罗杰 林少佳 宋平平 刘剑 《电机与控制应用》 2025年第3期315-327,共13页
【目的】本文研究了基于非支配排序遗传算法II(NSGA-II)的统一电能质量调节器(UPQC)多目标比例积分(PI)控制器参数优化问题。UPQC作为一种重要的电力质量改善装置,能够有效抑制电网电压波动、谐波及不平衡等问题,但其性能依赖于控制器... 【目的】本文研究了基于非支配排序遗传算法II(NSGA-II)的统一电能质量调节器(UPQC)多目标比例积分(PI)控制器参数优化问题。UPQC作为一种重要的电力质量改善装置,能够有效抑制电网电压波动、谐波及不平衡等问题,但其性能依赖于控制器参数的合理配置。针对传统优化方法难以满足系统的多目标性能需求,且容易陷入局部最优的问题,本文提出了一种基于NSGA-II的多目标优化策略,旨在寻求一种能够同时优化谐波抑制、电压稳定性和动态响应速度的控制器参数配置方案。【方法】本文采用NSGA-II进行多目标优化,该算法通过快速非支配排序和拥挤度计算来实现多目标函数的全局优化。NSGA-II具有良好的全局搜索能力和快速收敛特性,因此优化UPQC控制器的参数时,能够快速而准确地找到最优解。在优化过程中,以谐波抑制、电压稳定性和动态响应速度作为主要优化目标,通过精确调整PI控制器参数,求得最优的控制策略。【结果】通过电网电压补偿仿真和直流、交流侧电压仿真来验证本文所提策略的有效性和准确性。在电网电压补偿仿真中,将本文策略与非线性比例积分-模型预测控制(PI-MPC)策略进行对比,本文所提策略实际补偿电压波形更趋于正弦曲线,且波形较为光滑平顺,谐波含量比非线性PI-MPC策略更小。在直流、交流侧电压仿真中,本文策略比其他策略的调节时间更短且超调量更低,在系统发生扰动时恢复时间更短,具有更强的鲁棒性。【结论】基于NSGA-II的PI控制器参数优化策略能够有效提升UPQC在复杂工况下的性能表现,提高系统的电能质量和响应效率。与传统方法相比,该优化策略不仅提升了电力质量,而且在动态响应过程中表现出更优的稳定性和更快速的调节能力。 展开更多
关键词 参数优化 比例积分控制器 非支配排序遗传算法ii 统一电能质量调节器 电能质量
在线阅读 下载PDF
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:4
9
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated sorting genetic algorithm (NSGA-Ⅱ) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem 被引量:1
10
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
计及物料运输工装回收的制造车间物料配送路径优化 被引量:1
11
作者 葛茂根 万里 +3 位作者 凌琳 刘明周 张玺 扈静 《机械工程学报》 北大核心 2025年第14期397-409,共13页
制造车间生产过程中,物料运输工装的回收需求是整个车间物流管理的重要环节,在生产实际和相关研究中往往被忽视。针对牵引式自动导引车(Automated guided vehicle,AGV)与物料运输工装相结合的物料配送过程,提出一种综合考虑物料配送需... 制造车间生产过程中,物料运输工装的回收需求是整个车间物流管理的重要环节,在生产实际和相关研究中往往被忽视。针对牵引式自动导引车(Automated guided vehicle,AGV)与物料运输工装相结合的物料配送过程,提出一种综合考虑物料配送需求与物料运输工装回收任务的车间物料配送路径优化方法。首先,结合牵引式AGV的物料运输工装容量约束,建立以车间物料配送过程中AGV指派成本、路径运输成本和时间惩罚成本最小化为目标的物料配送路径规划模型。设计启发式两阶段分步优化算法求解该模型,第一阶段针对按生产计划计算得到的静态物料配送需求,采用改进非支配排序遗传算法实现多目标物料需求配送任务序列的生成;第二阶段针对根据生产过程动态产生的物料运输工装回收任务,采用象限寻优策略将其插入到现有配送序列中,以实现总成本和效率的最优。最后,以某电枢制造企业的数字化车间为例,验证了所提出优化方法的有效性与可行性,为制造车间物流管理提供参考和支持。 展开更多
关键词 车间物料配送 物料运输工装回收 两阶段分步优化算法 非支配排序遗传算法 象限寻优策略
原文传递
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:2
12
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
13
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-ii Pareto多目标解集
在线阅读 下载PDF
考虑有限AGV运输资源的柔性作业车间调度研究
14
作者 张国辉 蔡翌豪 +2 位作者 李志霄 郭胜会 张海军 《中国机械工程》 北大核心 2025年第8期1811-1823,共13页
针对智能制造环境中有限自动导引车(AGV)运输资源的柔性作业车间调度问题,以最小化最长完工时间、总能耗和工件的交货期惩罚值为目标,建立有限AGV运输资源的集成调度模型。提出一种改进的非支配排序遗传算法(NSGA-Ⅱ),针对集成调度模型... 针对智能制造环境中有限自动导引车(AGV)运输资源的柔性作业车间调度问题,以最小化最长完工时间、总能耗和工件的交货期惩罚值为目标,建立有限AGV运输资源的集成调度模型。提出一种改进的非支配排序遗传算法(NSGA-Ⅱ),针对集成调度模型构建三段式编码方案,设计三种初始化规则提高初始种群的质量和多样性。结合关键路径,提出一种改进的变邻域搜索以增强算法的局部搜索能力。实验部分采用多种评价指标与其他算法进行对比,实验结果表明:在不同规模标准测试算例和航空企业实际生产案例下,所提算法均能有效求解有限AGV运输资源的集成调度问题。同时分析不同AGV数量下集成调度模型的有效性,得出柔性作业车间中AGV数量符合边际效应递减规律的结论,为实际制造车间配置AGV提供了参考。 展开更多
关键词 有限运输资源 改进的非支配排序遗传算法 柔性作业车间调度问题 自动导引车
在线阅读 下载PDF
An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA) 被引量:10
15
作者 Mingjie Song Dongmei Chen 《Geo-Spatial Information Science》 SCIE CSCD 2018年第4期273-287,共15页
Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an im... Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an improved knowledge-informed non-dominated sorting genetic algorithm II(NSGA-II)for solving the MOLA problem by integrating the patch-based,edge growing/decreasing,neighborhood,and constraint steering rules.By applying both the classical and the knowledge-informed NSGA-II to a simulated planning area of 30×30 grid,we find that:when compared to the classical NSGA-II,the knowledge-informed NSGA-II consistently produces solutions much closer to the true Pareto front within shorter computation time without sacrificing the solution diversity;the knowledge-informed NSGA-II is more effective and more efficient in encouraging compact land allocation;the solutions produced by the knowledge-informed have less scattered/isolated land units and provide a good compromise between construction sprawl and conservation land protection.The better performance proves that knowledge-informed NSGA-II is a more reasonable and desirable approach in the planning context. 展开更多
关键词 Multi-objective land allocation(MOLA) non-dominated sorting genetic algorithm ii(NSGA-ii) knowledge-informed rules
原文传递
NSGA-II算法的改进及其在风火机组多目标动态组合优化中的应用 被引量:7
16
作者 王进 周宇轩 +2 位作者 戴伟 李亚峰 宋翼颉 《电力系统及其自动化学报》 CSCD 北大核心 2017年第2期107-111,共5页
为了解决风火机组动态组合优化问题,重点针对时间耦合的动态特性及混合整数变量的求解,提出改进的基于非支配排序的遗传算法NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ),引入节能减排理念,建立以CO2与SO2排放量及机组燃煤、... 为了解决风火机组动态组合优化问题,重点针对时间耦合的动态特性及混合整数变量的求解,提出改进的基于非支配排序的遗传算法NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ),引入节能减排理念,建立以CO2与SO2排放量及机组燃煤、启停费用最低的多目标函数。采用双层优化策略分别对启停离散量和负荷分配连续量进行寻优求解,引入模糊最大满意度决策法对Pareto解集进行决策,并嵌套在每次动态求解过程中。通过对某含风电场的10机组算例进行仿真,其结果表明了该方法的可行性和有效性。 展开更多
关键词 节能减排 机组组合 多目标 最大满意度决策 基于非支配排序的遗传算法-ii 双层优化
在线阅读 下载PDF
基于改进NSGA-II算法的装配式建筑施工调度优化 被引量:14
17
作者 汪和平 龚星霖 李艳 《工业工程》 北大核心 2023年第2期85-92,共8页
针对以往装配式建筑调度研究主要基于每项活动只有确定的活动时间和一种执行模式,而实际调度过程中存在不确定的活动时间和多种执行模式,建立多目标多模式资源约束下的模糊工期调度模型,提出一种改进的非支配排序遗传算法(INSGA-II)来求... 针对以往装配式建筑调度研究主要基于每项活动只有确定的活动时间和一种执行模式,而实际调度过程中存在不确定的活动时间和多种执行模式,建立多目标多模式资源约束下的模糊工期调度模型,提出一种改进的非支配排序遗传算法(INSGA-II)来求解(时间−成本)双目标优化模型。该算法根据活动的优先级关系进行种群初始化和交叉操作,同时提出新的包含活动列表、模式列表和资源列表的3段编码。最后,通过装配式建筑施工现场实际案例分析和算法性能对比,证明本文构建的调度模型和算法设计能有效地解决多模式资源约束下的模糊工期调度模型,为施工调度计划的设计提供科学的思路和方法。 展开更多
关键词 资源约束项目调度问题 装配式建筑施工 INSGA-ii算法 多目标优化
在线阅读 下载PDF
基于NSGA-Ⅱ算法的柔性气缸弹射影响参数优化研究
18
作者 王卓越 杨宝生 +2 位作者 姜毅 杨哩娜 王汉平 《振动与冲击》 北大核心 2025年第9期99-108,共10页
柔性气缸弹射作为一种新型弹射方法,具有红外目标隐蔽,能量输出稳定等优点。为解决柔性气缸弹射过载较大、响应时间较长的问题,进一步提高弹射响应速度和弹射稳定性,引入了一种代理模型优化方法对柔性气缸弹射过程进行优化,旨在减小弹... 柔性气缸弹射作为一种新型弹射方法,具有红外目标隐蔽,能量输出稳定等优点。为解决柔性气缸弹射过载较大、响应时间较长的问题,进一步提高弹射响应速度和弹射稳定性,引入了一种代理模型优化方法对柔性气缸弹射过程进行优化,旨在减小弹射过载并提升弹射速度。基于代理模型理论,建立柔性气缸弹射代理模型,对代理模型进行精度分析,在此基础上,深入探究了充气孔直径、开启时间以及开启时长这三个关键参数对弹射动力学响应的具体影响。结合NSGA-Ⅱ(non-dominated sorting genetic algorithm II)优化算法,对弹射模型的相关参数进行了优化处理。研究结果显示:采用粒子法的有限元模型能够精确模拟柔性气缸的弹射过程;进一步的分析表明,相较于响应面模型Kriging代理模型在替代柔性气缸有限元模型方面展现出了更高的准确性。针对初始设计点,提出了通过NSGA-Ⅱ算法优化的均衡设计方案,该方案成功地将弹射速度提升了4.79%,同时将弹射过载降低了21.70%;并针对弹射速度与最大过载的优化过程给出了优化方案。 展开更多
关键词 粒子法 柔性气缸弹射 Kriging代理模型 NSGA-Ⅱ算法
在线阅读 下载PDF
复合调制PWM控制多频多负载MCR-WPT系统参数辨识技术研究
19
作者 孙安冉 夏晨阳 +4 位作者 杨子跃 王茜睿 陈宇航 杨子健 王晨旭 《中国电机工程学报》 北大核心 2025年第20期8189-8201,I0027,共14页
多频多负载(multi-frequency and multiload,MFML)磁耦合谐振式无线电能传输(magnetic coupling wireless power transfer,MCR-WPT)系统由于结构复杂、频率多样、参数众多,使其建模、分析较为困难。文中基于复合调制脉宽调制(hybrid mod... 多频多负载(multi-frequency and multiload,MFML)磁耦合谐振式无线电能传输(magnetic coupling wireless power transfer,MCR-WPT)系统由于结构复杂、频率多样、参数众多,使其建模、分析较为困难。文中基于复合调制脉宽调制(hybrid modulation pulse width modualtion,HM-PWM)控制MFML MCR-WPT系统,提出一种多参数辨识方法。该方法通过构建各个负载频率点下原边电流有效值方程及原边电压与电流之间相位差方程,并基于带精英策略的快速非支配排序遗传算法-信赖域算法(Non-dominated sorting genetic algorithmⅡ-trust region,NSGAⅡ-TR)实现各负载及互感参数有效辨识。首先,对HM-PWM控制MFML MCR-WPT系统结构和参数辨识原理进行分析;接着,建立系统模型及参数辨识方程,基于NSGAⅡ-TR算法对方程精确求解;然后,分析系统自身参数变化对参数辨识精度的影响,并依据系统阻抗特性提出一种辨识精度提升方法;最后,搭建实验平台对理论正确性进行验证。实验结果表明,提出的方法可实现MFML MCR-WPT系统中各负载及互感参数的高精度辨识,参数辨识最大误差在5.93%以内;同时经过参数辨识精度提升后,参数辨识最大误差可进一步减小到2.38%。 展开更多
关键词 无线电能传输 多频多负载 参数辨识 NSGAⅡ-TR算法 准确性
原文传递
Optimization of solar thermal power station LCOE based on NSGA-Ⅱ algorithm 被引量:3
20
作者 LI Xin-yang LU Xiao-juan DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期1-8,共8页
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ... In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high. 展开更多
关键词 solar thermal power generation levelling cost of energy(LCOE) linear Fresnel non-dominated sorting genetic algorithm ii(NSGA-ii)
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部