This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ...This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.展开更多
Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection ...Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.展开更多
In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in...In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in recent years.As a result,how to achieve efficient testing and effective control of the quality of water conservancy projects has always been a topic of discussion in the field of water conservancy engineering in our country.This paper summarizes the application of non-destructive testing technology in the quality testing and control of water conservancy projects.On the basis of explaining the connotation and application advantages of non-destructive testing technology,the non-destructive testing application strategies for concrete strength,steel corrosion and shallow cracks in water conservancy projects were studied.展开更多
The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analys...The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.展开更多
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su...Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.展开更多
In heavy-duty long-distance transmission scenarios,steel wire ropes are widely used due to their unique advantages,and their safety is very important,which has also led to the rapid development of non-destructive test...In heavy-duty long-distance transmission scenarios,steel wire ropes are widely used due to their unique advantages,and their safety is very important,which has also led to the rapid development of non-destructive testing technology for steel wire ropes.The non-destructive testing technology for steel wire ropes is influenced by various factors such as its own structure and external working environment,and the testing process is relatively complex.Multiple testing methods and related types of sensors have also emerged.The electromagnetic detection method is currently the most effective method,but it also has its limitations in development and has not yet fully achieved the expected detection goals.In order to completely replace manual inspection work with the development of non-destructive testing technology for steel wire ropes,more in-depth research and long-term accumulation are still needed.展开更多
In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for peo...In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for people’s production and life,require high attention from industry insiders in terms of their energy efficiency testing.Relying on energy efficiency testing can achieve the goal of energy conservation and emission reduction,and related quality control technologies will also inject new momentum into the green development of the industry.This article will discuss the practical strategies of quality control technology for energy efficiency testing of electronic and electrical products based on the significance of such testing,hoping to provide some help.展开更多
Engineering incidents caused by the quality of tunnel construction and geological diseases occur from time to time,which not only causes many problems in engineering geophysical prospecting,but also provided a broad s...Engineering incidents caused by the quality of tunnel construction and geological diseases occur from time to time,which not only causes many problems in engineering geophysical prospecting,but also provided a broad space for the application and development of engineering geophysical prospecting technology.Non-destructive testing technology has made great progress.Combining the diagnosis and treatment of tunnel diseases,the ground penetrating radar non-destructive detection technology is discussed.展开更多
Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality thr...Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance.Current quality control(QC)and quality assurance(QA)plans provide limited coverage.Consequently,the risk of missing areas with poor joint compaction is significant.A density profiling system(DPS)is a non-destructive alternative to conventional destructive evaluation methods.It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics.The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality.The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint.The paper proposes a dielectric-based longitudinal joint quality index(LJQI)to evaluate the relative compaction of the joint during construction.It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints,identify locations of poor quality during construction,and achieve better-performing flexible pavements.展开更多
Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in ...Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.展开更多
When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highwa...When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and field monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confirmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects.展开更多
Rockfall kinematic characteristics exhibit significant randomness and are influenced by factors such as rock mass properties,slope morphology,impact angle,and slope materials.Accurately determining the key parameters ...Rockfall kinematic characteristics exhibit significant randomness and are influenced by factors such as rock mass properties,slope morphology,impact angle,and slope materials.Accurately determining the key parameters of rockfall movement is critical for understanding motion patterns and effectively preventing and controlling rockfall hazards.In this study,a monitoring system consisting of selfdeveloped inertial navigation equipment,high-speed cameras,and an unmanned aerial vehicle was used to conduct onsite motion tests involving four differently shaped rock specimens on three types of slopes(bedrock,detritus,and clast bedding).The selfdeveloped inertial navigation system integrated a highdynamic-range accelerometer(±400 g)and a shockresistant gyroscope(±4000°/s),capable of robustly collecting data during the test.The data collected from these tests were processed to extract key kinematic parameters such as velocity,trajectory,restitution coefficients,and friction coefficients.The test results demonstrated that the inertial navigation system accurately recorded the acceleration and angular velocity of the rocks during motion,with these measurements closely aligning with the field data.The normal and tangential restitution coefficients were found to be influenced primarily by the slope material and impact angle,with higher normal restitution coefficients observed for low-angle impacts.The normal restitution coefficients ranged from 0.35 to 0.86,whereas the tangential restitution coefficients ranged from 0.46 to 0.91,depending on the slope materials.Additionally,the sliding friction coefficient was calculated to be between 0.66 and 0.78,whereas the rolling friction coefficient for the slab-shaped specimen was determined to be 0.53.These findings provide valuable data for improving the accuracy of rockfall trajectory predictions and the design of protective structures.展开更多
BACKGROUND Dyschromatosis universalis hereditaria(DUH)is a rare type of autosomal dominant inheritance disease.It has varying gene mutation sites among different ethnicities.SASH1 and ABCB6 have been identified as the...BACKGROUND Dyschromatosis universalis hereditaria(DUH)is a rare type of autosomal dominant inheritance disease.It has varying gene mutation sites among different ethnicities.SASH1 and ABCB6 have been identified as the causative genes of this disorder.CASE SUMMARY A 30-year-old woman presented with irregular black pigmentation spots to our department.Upon examination,the pigmentations were found to be especially dense on the extremities and the face.She had no family history of inbreeding,nor any previous chemical exposure.Genetic testing confirmed that the disease occu-rred because the patient has a SASH1 gene mutation.Following the use of assisted reproductive technology and preimplantation genetic testing for monogenic disorders,the patient give birth to a health baby.CONCLUSION Using assisted reproductive technology/preimplantation genetic testing for monogenic disorders is an option for DUH patients to reduce the risk of trans-mitting the pathogenic variant to their offspring.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable...Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable Non-Destructive Testing(NDT)methods are required to prevent catastrophic failures.This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites.The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.展开更多
Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the resear...Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the research hotspots in the field of non-destructive testing(NDT)and widely used for testing long distance pipelines.This paper presents the development of MFL tesing technology from the aspects of basic theory,influencing factors,magnetization technology,signal processing,etc.The problems to be solved and the future development are summarized,which can provide reference for the research and system development of MFL testing technology.展开更多
Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of c...Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.展开更多
Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance p...Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance philosophy used in theaircraft design methodology as well as many other operation and maintenance programsof machinery and constructions. The following study is focusing on overviewing animportant group of NDT methods: the optical and other ones, which found broadapplicability in scientific and industrial studies nowadays. The paper discusses theselected most widely applicable methods, namely, visual testing, ultrasonic testing,radiographic testing, infrared thermography as well as electronic speckle patterninterferometry and shearographic testing. Besides the basic principles of testing usingthese methods, their potential applications in various industrial and technologicalbranches are broadly discussed. The analysis as categorization of the NDT methodsprovided in this paper may help in selection of such methods in diagnosis of varioustypes of structures and defects and damage occurring in these structures.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
文摘This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.
文摘Highway test and detection technology play a very important role in controlling the quality of road and bridge engineering and improving the maintenance of roads and bridges.The study of highway bridge test detection technology is both theoretically and practically useful.Road and bridge test and detection is a complicated task.With the development of science and technology,highway and bridge engineering test and detection technology has also made great progress.The continuous improvement of test and detection technology has brought good social benefits to road and bridge construction.This article discusses the problems in test and detection technology of highway bridges and how to improve the quality of test and detection.
文摘In view of social development,the demand for water conservancy engineering applications continues to increase.The number and scale of water conservancy projects in China have been in a state of continuous expansion in recent years.As a result,how to achieve efficient testing and effective control of the quality of water conservancy projects has always been a topic of discussion in the field of water conservancy engineering in our country.This paper summarizes the application of non-destructive testing technology in the quality testing and control of water conservancy projects.On the basis of explaining the connotation and application advantages of non-destructive testing technology,the non-destructive testing application strategies for concrete strength,steel corrosion and shallow cracks in water conservancy projects were studied.
文摘The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.42225206)National Natural Science Foundation of China(42207180,42477209,42302320).
文摘Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.
文摘In heavy-duty long-distance transmission scenarios,steel wire ropes are widely used due to their unique advantages,and their safety is very important,which has also led to the rapid development of non-destructive testing technology for steel wire ropes.The non-destructive testing technology for steel wire ropes is influenced by various factors such as its own structure and external working environment,and the testing process is relatively complex.Multiple testing methods and related types of sensors have also emerged.The electromagnetic detection method is currently the most effective method,but it also has its limitations in development and has not yet fully achieved the expected detection goals.In order to completely replace manual inspection work with the development of non-destructive testing technology for steel wire ropes,more in-depth research and long-term accumulation are still needed.
文摘In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for people’s production and life,require high attention from industry insiders in terms of their energy efficiency testing.Relying on energy efficiency testing can achieve the goal of energy conservation and emission reduction,and related quality control technologies will also inject new momentum into the green development of the industry.This article will discuss the practical strategies of quality control technology for energy efficiency testing of electronic and electrical products based on the significance of such testing,hoping to provide some help.
文摘Engineering incidents caused by the quality of tunnel construction and geological diseases occur from time to time,which not only causes many problems in engineering geophysical prospecting,but also provided a broad space for the application and development of engineering geophysical prospecting technology.Non-destructive testing technology has made great progress.Combining the diagnosis and treatment of tunnel diseases,the ground penetrating radar non-destructive detection technology is discussed.
文摘Longitudinal joint construction quality is critical to the life of flexible pavements.Maintaining deteriorated longitudinal joints has become a challenge for many highway agencies.Improving the joint's quality through better compaction during construction can help achieve flexible pavements with longer service lives and less maintenance.Current quality control(QC)and quality assurance(QA)plans provide limited coverage.Consequently,the risk of missing areas with poor joint compaction is significant.A density profiling system(DPS)is a non-destructive alternative to conventional destructive evaluation methods.It can provide quick and continuous real-time coverage of the compaction during construction in dielectrics.The paper presents several case studies comparing various types of longitudinal joints and demonstrating the use of DPS to evaluate the joint's compaction quality.The paper shows that dielectric measurements can provide valuable insight into the ability of various construction techniques to achieve adequate levels of compaction at the longitudinal joint.The paper proposes a dielectric-based longitudinal joint quality index(LJQI)to evaluate the relative compaction of the joint during construction.It also shows that adopting DPS for assessing the compaction of longitudinal joints can minimize the risk of agencies accepting poorly constructed joints,identify locations of poor quality during construction,and achieve better-performing flexible pavements.
基金National Natural Science Foundation of China(No.61201412)Ntural Science Foundation of Shanxi Province(No.2012021011-5)
文摘Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.
基金Science and Technology Major Project of Xinjiang Uygur Autonomous Region(2020A03003-7)Fundamental Research on Natural Science Program of Shaanxi Province(2021JM-180)+2 种基金Fundamental Research Funds for the Central Universities,CHD(Project for Leading Talents)(300102211302)Tianshan Cedar Plan of Science and Technology Department of Xinjiang Uygur Autonomous Region(2017XS13)Shaanxi Province Young Talent Lifting Program(CLGC202219).
文摘When the expressway crosses the goafs inevitably,the design is generally to build the road on coal pillars as much as possible.However,the existing coal pillars are often unable to meet relevant requirements of highway construction.Combining three-dimensional physical model tests,numerical simulations and field monitoring,with the Urumqi East Second Ring Road passing through acute inclined goafs as a background,the deformation and failure mechanism of the overlying rock and coal pillars in acute inclined goafs under expressway load were studied.And in accordance with construction requirements of subgrade,comprehensive consideration of the deformation and instability mechanism of acute inclined goafs,the treatment measures and suggestions for this type of geological disasters were put forward.The research results confirmed the rationality of coal pillars in acute inclined goafs under the expressway through grouting.According to the ratio of diff erent overlying rock thickness to coal pillar height,the change trend and value of the required grouting range were summarized,which can provide reference for similar projects.
基金supported by Guizhou Provincial Basic Research Program(Natural Science,Grant No.QKHJC-ZK[2022]YB075)the National Natural Science Foundation of China(Grant No.42067046)+2 种基金the Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements(N0.QKHCG-LH2024-ZD025)the Science and Technology Planning Project of Guiyang City(Grant No.ZKHT[2023]13-10)Undergraduate Training Program for Innovation and Entrepreneurship of Guizhou Province(Project No.S202110657053)。
文摘Rockfall kinematic characteristics exhibit significant randomness and are influenced by factors such as rock mass properties,slope morphology,impact angle,and slope materials.Accurately determining the key parameters of rockfall movement is critical for understanding motion patterns and effectively preventing and controlling rockfall hazards.In this study,a monitoring system consisting of selfdeveloped inertial navigation equipment,high-speed cameras,and an unmanned aerial vehicle was used to conduct onsite motion tests involving four differently shaped rock specimens on three types of slopes(bedrock,detritus,and clast bedding).The selfdeveloped inertial navigation system integrated a highdynamic-range accelerometer(±400 g)and a shockresistant gyroscope(±4000°/s),capable of robustly collecting data during the test.The data collected from these tests were processed to extract key kinematic parameters such as velocity,trajectory,restitution coefficients,and friction coefficients.The test results demonstrated that the inertial navigation system accurately recorded the acceleration and angular velocity of the rocks during motion,with these measurements closely aligning with the field data.The normal and tangential restitution coefficients were found to be influenced primarily by the slope material and impact angle,with higher normal restitution coefficients observed for low-angle impacts.The normal restitution coefficients ranged from 0.35 to 0.86,whereas the tangential restitution coefficients ranged from 0.46 to 0.91,depending on the slope materials.Additionally,the sliding friction coefficient was calculated to be between 0.66 and 0.78,whereas the rolling friction coefficient for the slab-shaped specimen was determined to be 0.53.These findings provide valuable data for improving the accuracy of rockfall trajectory predictions and the design of protective structures.
文摘BACKGROUND Dyschromatosis universalis hereditaria(DUH)is a rare type of autosomal dominant inheritance disease.It has varying gene mutation sites among different ethnicities.SASH1 and ABCB6 have been identified as the causative genes of this disorder.CASE SUMMARY A 30-year-old woman presented with irregular black pigmentation spots to our department.Upon examination,the pigmentations were found to be especially dense on the extremities and the face.She had no family history of inbreeding,nor any previous chemical exposure.Genetic testing confirmed that the disease occu-rred because the patient has a SASH1 gene mutation.Following the use of assisted reproductive technology and preimplantation genetic testing for monogenic disorders,the patient give birth to a health baby.CONCLUSION Using assisted reproductive technology/preimplantation genetic testing for monogenic disorders is an option for DUH patients to reduce the risk of trans-mitting the pathogenic variant to their offspring.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this researchsupported by EPSRC grant EP/R002495/1the European Metrology Research Programme through grant 17IND08。
文摘Composite materials are increasingly used in the aerospace industry.To fully realise the weight saving potential along with superior mechanical properties that composites offer in safety critical applications,reliable Non-Destructive Testing(NDT)methods are required to prevent catastrophic failures.This paper will review the state of the art in the field and point to highlight the success and challenges that different NDT methods are faced to evaluate the integrity of critical aerospace composites.The focus will be on advanced certificated NDT methods for damage detection and characterization in composite laminates for use in the aircraft primary and secondary structures.
基金National Natural Science Foundation of China(No.51804267)Applied Basic Research Project of Sichuan Province(No.2017JY0162)。
文摘Magnetic flux leakage(MFL)testing technology has the advantages of simple principle,easy engineering implementation and low requirements on the surface of the detected workpiece.Therefore,it has been one of the research hotspots in the field of non-destructive testing(NDT)and widely used for testing long distance pipelines.This paper presents the development of MFL tesing technology from the aspects of basic theory,influencing factors,magnetization technology,signal processing,etc.The problems to be solved and the future development are summarized,which can provide reference for the research and system development of MFL testing technology.
基金National Key Research and Development Project of China(No.2018YFB1701200)。
文摘Aiming at the problems of low reliability and complex operation of traditional coin-tap test of composite material,this paper introduces the grey system theory and achieves better performance.The response signals of coin-tap are classified through the grey clustering based on relation analysis,and corresponding improvements are made to the calculation method of the relation degree of nearness.First,the time history of acceleration is taken as the system behavior sequence.The improved correlation calculation method is used to solve the relation degree of nearness between the sequences,and the matrix of degree of grey relation is constructed based on this.Then,the sequence groups are summarized through the matrix,and the response signals of coin-tap are qualitatively classified according to the location of the reference sequence.Finally,the defect detection of composite materials is completed without pre-testing.The test results show that the accuracy of the coin-tap test based on improved grey clustering reaches 100%,which simplifies the operation steps while ensuring the reliability of the coin-tap test results.
文摘Non-destructive testing (NDT) of structures is one of the most important tasksof the proper maintenance and diagnosis of machines and constructions structuralcondition. NDT methods contribute to the damage tolerance philosophy used in theaircraft design methodology as well as many other operation and maintenance programsof machinery and constructions. The following study is focusing on overviewing animportant group of NDT methods: the optical and other ones, which found broadapplicability in scientific and industrial studies nowadays. The paper discusses theselected most widely applicable methods, namely, visual testing, ultrasonic testing,radiographic testing, infrared thermography as well as electronic speckle patterninterferometry and shearographic testing. Besides the basic principles of testing usingthese methods, their potential applications in various industrial and technologicalbranches are broadly discussed. The analysis as categorization of the NDT methodsprovided in this paper may help in selection of such methods in diagnosis of varioustypes of structures and defects and damage occurring in these structures.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.