Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)...Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.展开更多
The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm mod...The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is-13 dB --27 dB. And a maximum crosstalk deterioration of 6d B caused by two-path interference is also found.展开更多
In data streams or web scenarios at highly variable and unpredictable rates, a good join algorithm should be able to "hide" the delays by continuing to output join results. The non-blocking algorithms allow some tup...In data streams or web scenarios at highly variable and unpredictable rates, a good join algorithm should be able to "hide" the delays by continuing to output join results. The non-blocking algorithms allow some tuples to be flushed onto disk, with the goal of producing results continuously when data transmission is suspended. But state-of-the-art algorithms have trouble with the constraint of allocated memory. To make better use of memory, a novel non-blocking join algorithm based on hash-merge for improving query response times is proposed. The reduced data structure of in-memory tuples helps to improve memory utility. A replacement selection tree is applied to adjust memory by expanding or shrinking the size of the tree and separates one external join transaction into multi-subtasks. In addition, a cost model to estimate task output rate is proposed to select the in-disk portion that promises to produce the fastest results in the external join stage. Experiments show that the technique, with far less memory, delivers results faster than the three non-blocking join algorithms ( XJoin, HMJ and RPJ ) , with up to almost two-fold improvement in reliable network and one order of magnitude improvement in unreliable network in terms of the number of the reported tuples.展开更多
Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and...Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and the data delay increases dramatically. With the advent of optical router, the traditional electrical interconnection mode has changed to optical interconnection mode. In the packet switched optical interconnection network, the data communication mechanism consists of 3 processes: link establishment, data transmission and link termination, but the circuit-switched data transmission method greatly limits the utilization of resources. The number of micro-ring resonators in the on-chip large-scale optical interconnect network is an important parameter affecting the insertion loss. The proposed λ-route, GWOR, Crossbar structure has a large overall network insertion loss due to the use of many micro-ring resonators. How to use the least micro-ring resonator to realize non-blocking communication between multiple cores has been a research hotspot. In order to improve bandwidth and reduce access latency, an optical interconnection structure called multilevel switching optical network on chip(MSONoC) is proposed in this paper. The broadband micro-ring resonators(BMRs) are employed to reduce the number of micro-ring resonators(MRs) in the network, and the structure can provide the service of non-blocking point to point communication with the wavelength division multiplexing(WDM) technology. The results show that compared to λ-route, GWOR, Crossbar and the new topology structure, the number of micro-ring resonators of MSONoC are reduced by 95.5%, 95.5%, 87.5%, and 60% respectively. The insertion loss of the minimum link of new topology, mesh and MSONoC structure is 0.73 dB, 0.725 dB and 0.38 dB.展开更多
With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV sy...With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.展开更多
The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT ope...The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.展开更多
In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ...In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.展开更多
Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive p...Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC).展开更多
Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full powe...Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.展开更多
To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-int...To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-integral(PI)control,high model accuracy requirements,and complex system parameter tuning,this paper proposes a droop-controlled converter reactive power support strategy based on first-order linear active disturbance rejection control(LADRC).First,a mathematical model of a droop-controlled grid-forming(GFM)converter is established.A model equivalence method is then proposed to transform the dynamic characteristics of the control loop into equivalent impedance parameters.Based on the equivalent impedance parameter model,the influencing factors of the converter terminal voltage and point of common coupling(PCC)voltage are derived.Next,a first-order linear active disturbance rejection control strategy is introduced into the traditional droop control framework,and the controller parameters are optimized via the bandwidth tuning method.Finally,a simulation model of the droop-controlled GFM converter based on the linear active disturbance rejection controller is constructed on the PSCAD/EMTDC platform,and through comparative experiments under typical grid fault conditions,the effectiveness of the proposed control strategy in improving the system fault ride-through capability and voltage support is verified.展开更多
Multiport magnetic network energy routers(MNERs)are a key technology in the energy internet that can improve the consumption level of renewable energy,realize the integration of source-grid-load-storage,and ensure the...Multiport magnetic network energy routers(MNERs)are a key technology in the energy internet that can improve the consumption level of renewable energy,realize the integration of source-grid-load-storage,and ensure the stable operation of power systems.However,the power grid may break down,causing the grid currents to exceed the safe threshold and the DC bus voltages to fluctuate,thereby threatening the stability of the power system.A coordinated low-voltage ride-through(LVRT)control strategy for an MNER-based grid connection system is proposed.The proposed control strategy can provide significant LVRT capability for an MNER-based grid-connection system and maintain the DC bus voltage of each port at the rated value.A simulation is conducted using the PLECS platform,and the results validate the effectiveness of the proposed coordinated LVRT control strategy.展开更多
We report on the first monolithically integrated microring-based optical switch in the switch-and-select architecture. The switch fabric delivers strictly non-blocking connectivity while completely canceling the first...We report on the first monolithically integrated microring-based optical switch in the switch-and-select architecture. The switch fabric delivers strictly non-blocking connectivity while completely canceling the first-order crosstalk. The 4 × 4 switching circuit consists of eight silicon microring-based spatial(de-)multiplexers interconnected by a Si/SiN dual-layer crossing-free central shuffle. Analysis of the on-state and off-state power transfer functions reveals the extinction ratios of individual ring resonators exceeding 25 dB, leading to switch crosstalk suppression of up to over 50 dB in the switch-and-select topology. Optical paths are assessed, showing losses as low as 0.1 dB per off-resonance ring and 0.5 dB per on-resonance ring. Photonic switching is actuated with integrated micro-heaters to give an ~24 GHz passband. The fully packaged device is flip-chip bonded onto a printed circuit board breakout board with a UV-curved fiber array.展开更多
Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy captu...Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.展开更多
Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FM...Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies.展开更多
As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the...As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the generator transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the generator transient stability in the power system with significant PV penetration is assessed by a numerical simulation. In order to assess the impact from various angles, simulation parameters such as levels of PV penetration, variety of power sources (inverter or rotational machine), and existence of LVRT capability are considered. The simulation is performed by using PSCAD/EMTDC software.展开更多
The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generat...The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence, the power system transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.展开更多
Low-loss, non-blocking, scalable passive optical interconnect network on-chip(LOOKNoC) structure was proposed based on 2×2 optical exchange switches, using wavelength division multiplexing(WDM)technology to expan...Low-loss, non-blocking, scalable passive optical interconnect network on-chip(LOOKNoC) structure was proposed based on 2×2 optical exchange switches, using wavelength division multiplexing(WDM)technology to expand to 8×8, 16×16, 32×32, 64×64 passive optical interconnection networks, which can achieve non-blocking communication. The experimental results show that based on the 16×16 optical interconnection network structure, the number of microring resonators(MRs) in LOOKNoC was reduced by 90.9%, 90.9%, 20.0% and 75.0% compared with the generic wavelength-routed optical router(GWOR), λ-router, topology and CrossBar structure. By testing the performance parameters based on the structure of 16×16 by the OMNET++ platform, as the result shows, the average insertion loss of LOOKNoC is 3.0%, 11.6%, 4.8% and 16.7% less than that of GWOR, λ-router, Mesh, and CrossBar structures.展开更多
A sorting algorithm based on the Batcher' s algorithm is presented. An 8X8multistage interconnection network(MIN) is constructed. Applying wavelength division multiplexing(WDM) technology and integrating control m...A sorting algorithm based on the Batcher' s algorithm is presented. An 8X8multistage interconnection network(MIN) is constructed. Applying wavelength division multiplexing(WDM) technology and integrating control mode, the designed network can realize non-blockingcommunication. The time delay of the MIN and the switches needed are also analyzed in theory, thededuced result conforms that the MIN designed previously is feasible. In the case of the samecommunication quality guaranteed, MIN uses the least switches and completes the communication moreefficiently.展开更多
文摘Grid-Forming(GFM)converters are prone to fault-induced overcurrent and power angle instability during grid fault-induced voltage sags.To address this,this paper develops a multi-loop coordinated fault ridethrough(FRT)control strategy based on a power outer loop and voltage-current inner loops,aiming to enhance the stability and current-limiting capability of GFM converters during grid fault conditions.During voltage sags,the GFM converter’s voltage source behavior is maintained by dynamically adjusting the reactive power reference to provide voltage support,thereby effectively suppressing the steady-state component of the fault current.To address the active power imbalance induced by voltage sags,a dynamic active power reference correction method based on apparent power is designed to mitigate power angle oscillations and limit transient current.Moreover,an adaptive virtual impedance loop is implemented to enhance dynamic transient current-limiting performance during the fault initiation phase.This approach improves the responsiveness of the inner loop and ensures safe system operation under various fault severities.Under asymmetric fault conditions,a negative-sequence reactive current compensation strategy is incorporated to further suppress negative-sequence voltage and improve voltage symmetry.The proposed control scheme enables coordinated operation of multiple control objectives,including voltage support,current suppression,and power angle stability,across different fault scenarios.Finally,MATLAB/Simulink simulation results validate the effectiveness of the proposed strategy,showcasing its superior performance in current limiting and power angle stability,thereby significantly enhancing the system’s fault ride-through capability.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301701)the National High Technology Research and Development Program of China(Grant Nos.2013AA014402+2 种基金2012AA012202and 2015AA016904)the National Natural Science Foundation of China(Grant Nos.61275065 and 61107048)
文摘The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is-13 dB --27 dB. And a maximum crosstalk deterioration of 6d B caused by two-path interference is also found.
基金The National High Technology Research and Development Program of China(No.2007AA01Z309)the National Natural Science Foundation of China(No.60803160,No.60873030)
文摘In data streams or web scenarios at highly variable and unpredictable rates, a good join algorithm should be able to "hide" the delays by continuing to output join results. The non-blocking algorithms allow some tuples to be flushed onto disk, with the goal of producing results continuously when data transmission is suspended. But state-of-the-art algorithms have trouble with the constraint of allocated memory. To make better use of memory, a novel non-blocking join algorithm based on hash-merge for improving query response times is proposed. The reduced data structure of in-memory tuples helps to improve memory utility. A replacement selection tree is applied to adjust memory by expanding or shrinking the size of the tree and separates one external join transaction into multi-subtasks. In addition, a cost model to estimate task output rate is proposed to select the in-disk portion that promises to produce the fastest results in the external join stage. Experiments show that the technique, with far less memory, delivers results faster than the three non-blocking join algorithms ( XJoin, HMJ and RPJ ) , with up to almost two-fold improvement in reliable network and one order of magnitude improvement in unreliable network in terms of the number of the reported tuples.
基金Supported by the National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61634004)Shaanxi Provincial Co-ordination Innovation Project of Science and Technology(No.2016KTZDGY02-04-02)+1 种基金Shaanxi Provincial Key R&D Plan(No.2017GY-060)Shaanxi International Science and Technology Cooperation Program(No.2018KW-006).
文摘Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and the data delay increases dramatically. With the advent of optical router, the traditional electrical interconnection mode has changed to optical interconnection mode. In the packet switched optical interconnection network, the data communication mechanism consists of 3 processes: link establishment, data transmission and link termination, but the circuit-switched data transmission method greatly limits the utilization of resources. The number of micro-ring resonators in the on-chip large-scale optical interconnect network is an important parameter affecting the insertion loss. The proposed λ-route, GWOR, Crossbar structure has a large overall network insertion loss due to the use of many micro-ring resonators. How to use the least micro-ring resonator to realize non-blocking communication between multiple cores has been a research hotspot. In order to improve bandwidth and reduce access latency, an optical interconnection structure called multilevel switching optical network on chip(MSONoC) is proposed in this paper. The broadband micro-ring resonators(BMRs) are employed to reduce the number of micro-ring resonators(MRs) in the network, and the structure can provide the service of non-blocking point to point communication with the wavelength division multiplexing(WDM) technology. The results show that compared to λ-route, GWOR, Crossbar and the new topology structure, the number of micro-ring resonators of MSONoC are reduced by 95.5%, 95.5%, 87.5%, and 60% respectively. The insertion loss of the minimum link of new topology, mesh and MSONoC structure is 0.73 dB, 0.725 dB and 0.38 dB.
文摘With continuously increasing of photovoltaic (PV) plant’s penetration, it has become a critical issue to improve the fault ride-through capability of PV plant. This paper refers to the German grid code, and the PV system is controlled to keep grid connected, as well as inject reactive current to grid when fault occurs. The mathematical model of PV system is established and the fault characteristic is studied with respect to the control strategy. By analyzing the effect of reactive power supplied by the PV system to the point of common coupling (PCC) voltage, this paper proposes an adaptive voltage support control strategy to enhance the fault ride-through capability of PV system. The control strategy fully utilizes the PV system’s capability of voltage support and takes the safety of equipment into account as well. At last, the proposed control strategy is verified by simulation.
文摘The installation of wind energy has increased rapidly around the world. The grid codes about the wind energy require wind turbine (WT) has the ability of fault (or low voltage) ride-through (FRT). To study the FRT operation of the wind farms, three methods were discussed. First, the rotor short current of doubly-fed induction generator (DFIG) was limited by introducing a rotor side protection circuit. Second, the voltage of DC bus was limited by a DC energy absorb circuit. Third, STATCOM was used to increase the low level voltages of the wind farm. Simulation under MATLAB was studied and the corresponding results were given and discussed. The methods proposed in this paper can limit the rotor short current and the DC voltage of the DFIG WT to some degree, but the voltage support to the power system during the fault largely depend on the installation place of STATCOM.
文摘In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.
文摘Power electronic interface of dispersed generation plays a very important role in connecting a dispersed generation with utility grids. A power electronic interface not only adjusts the amount of active and reactive power injecting into a grid but also implements other importance duties as well. In this study, negative-sequence current injection has been fulfilled in three-phase power electronic interface for two important duties besides injecting reference power into utility grids. The first one is for islanding detection, and the other one is to enhance unbalance-fault ride-through capability of dispersed generation. This paper introduces a mechanism of negative-sequence injection based on controlling two separate coordinates of dq-control and explains the effect of negative-sequence injection in limiting the unbalanced currents generated from a dispersed generation. Using adaptive notch filter as a signal processing unit for the three-phase system, negative-sequence components are observed. The performance of entire control system is evaluated by time domain simulations, PSCAD/EMTDC (power systems computer aided design/electromagnetic transients including DC).
文摘Modeling and validation of full power converter wind turbine models with field measurement data are rarely reported in papers. In this paper an aggregated generic dynamic model of the wind farm consisting of full power converter wind turbines is composed and the model validation based on actual field measurements is performed. The paper is based on the measurements obtained from the real short circuit test applied to connection point of observed wind farm. The presented approach for validating the composed model and fault ride-through (FRT) capability for the whole wind park is unique in overall practice and its significance and importance is described and analyzed.
基金supported by the Smart Grid-National Science and Technology Major Project(No.2024ZD0801400)the Science and Technology Projects of State Grid Corporation of China(No.52272224000V).
文摘To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-integral(PI)control,high model accuracy requirements,and complex system parameter tuning,this paper proposes a droop-controlled converter reactive power support strategy based on first-order linear active disturbance rejection control(LADRC).First,a mathematical model of a droop-controlled grid-forming(GFM)converter is established.A model equivalence method is then proposed to transform the dynamic characteristics of the control loop into equivalent impedance parameters.Based on the equivalent impedance parameter model,the influencing factors of the converter terminal voltage and point of common coupling(PCC)voltage are derived.Next,a first-order linear active disturbance rejection control strategy is introduced into the traditional droop control framework,and the controller parameters are optimized via the bandwidth tuning method.Finally,a simulation model of the droop-controlled GFM converter based on the linear active disturbance rejection controller is constructed on the PSCAD/EMTDC platform,and through comparative experiments under typical grid fault conditions,the effectiveness of the proposed control strategy in improving the system fault ride-through capability and voltage support is verified.
基金Supported by the National Key Research and Development Program of China(2022YFE0196300)Science,Technology&Innovation Funding Authority(STDF)(46505).
文摘Multiport magnetic network energy routers(MNERs)are a key technology in the energy internet that can improve the consumption level of renewable energy,realize the integration of source-grid-load-storage,and ensure the stable operation of power systems.However,the power grid may break down,causing the grid currents to exceed the safe threshold and the DC bus voltages to fluctuate,thereby threatening the stability of the power system.A coordinated low-voltage ride-through(LVRT)control strategy for an MNER-based grid connection system is proposed.The proposed control strategy can provide significant LVRT capability for an MNER-based grid-connection system and maintain the DC bus voltage of each port at the rated value.A simulation is conducted using the PLECS platform,and the results validate the effectiveness of the proposed coordinated LVRT control strategy.
基金Air Force Research Laboratory(AFRL)(FA8650-15-2-5220)Advanced Research Projects Agency-Energy(ARPA-E)(DE-AR00000843)+1 种基金European Commission(EC)(H2020-731954)Rockport Networks Inc
文摘We report on the first monolithically integrated microring-based optical switch in the switch-and-select architecture. The switch fabric delivers strictly non-blocking connectivity while completely canceling the first-order crosstalk. The 4 × 4 switching circuit consists of eight silicon microring-based spatial(de-)multiplexers interconnected by a Si/SiN dual-layer crossing-free central shuffle. Analysis of the on-state and off-state power transfer functions reveals the extinction ratios of individual ring resonators exceeding 25 dB, leading to switch crosstalk suppression of up to over 50 dB in the switch-and-select topology. Optical paths are assessed, showing losses as low as 0.1 dB per off-resonance ring and 0.5 dB per on-resonance ring. Photonic switching is actuated with integrated micro-heaters to give an ~24 GHz passband. The fully packaged device is flip-chip bonded onto a printed circuit board breakout board with a UV-curved fiber array.
基金Project (No.50577056) supported by the National Natural Science Foundation of China
文摘Doubly-Fed Induction Generator (DFIG), with vector control applied, is widely used in Variable-Speed Constant- Frequency (VSCF) wind energy generation system and shows good performance in maximum wind energy capture. But in two traditional vector control schemes, the equivalent stator magnetizing current is considered invariant in order to simplify the rotor current inner-loop controller. The two schemes can perform very well when the grid is in normal condition. However, when grid disturbance such as grid voltage dip or swell fault occurs, the control performance worsens, the rotor over current occurs and the Fault Ride-Through (FRT) capability of the DFIG wind energy generation system gets seriously deteriorated. An accurate DFIG model was used to deeply investigate the deficiency of the traditional vector control. The improved control schemes of two typical traditional vector control schemes used in DFIG were proposed, and simulation study of the proposed and traditional control schemes, with robust rotor current control using Internal Model Control (IMC) method, was carded out. The validity of the proposed modified schemes to control the rotor current and to improve the FRT capability of the DFIG wind energy generation system was proved by the comparison study.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0903100)Science and Technology Projects of State Grid Corporation of China(No.521104170043).
文摘Voltage sags in power system may lead to serious problems such as the off-grid of distributed generation and electrical equipment failures.As a novel type of power electronic equipment,a flexible multi-state switch(FMSS)is capable to support the voltage during the grid faults.In this paper,a voltage control strategy to support the voltage in a distribution network is proposed by introducing three-port FMSS.The positive-negative-sequence compensation(PNSC)scheme is adopted to control the active and reactive current.This control scheme eliminates active power oscillations at the port of voltage sags and reduces coupling oscillations of other ports.Based on the characteristics of the voltage support under PNSC scheme,two voltage support strategies are proposed.A proportional-integral controller is introduced to provide the reactive power references,which eliminates the errors when estimating the grid voltage and impedance.A current limiting scheme is adopted to keep the port current in a safe range by adjusting the active and reactive power references.The voltage support strategies in two different voltage sags are simulated,and results show the feasibility and effectiveness of the proposed control strategies.
文摘As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the generator transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the generator transient stability in the power system with significant PV penetration is assessed by a numerical simulation. In order to assess the impact from various angles, simulation parameters such as levels of PV penetration, variety of power sources (inverter or rotational machine), and existence of LVRT capability are considered. The simulation is performed by using PSCAD/EMTDC software.
文摘The impact of large-scale grid-connected PV (photovoltaics) on power system transient stability is discussed in this paper. In response to an increase of PV capacity, the capacity of conventional synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence, the power system transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the potential impact of significant PV penetration on the transient stability is assessed by a numerical simulation using PSCAD/EMTDC.
基金supported by the National Natural Science Foundation of China (61834005, 61772417, 61874087)the Shaanxi International Science and Technology Cooperation Program (2018KW-006)。
文摘Low-loss, non-blocking, scalable passive optical interconnect network on-chip(LOOKNoC) structure was proposed based on 2×2 optical exchange switches, using wavelength division multiplexing(WDM)technology to expand to 8×8, 16×16, 32×32, 64×64 passive optical interconnection networks, which can achieve non-blocking communication. The experimental results show that based on the 16×16 optical interconnection network structure, the number of microring resonators(MRs) in LOOKNoC was reduced by 90.9%, 90.9%, 20.0% and 75.0% compared with the generic wavelength-routed optical router(GWOR), λ-router, topology and CrossBar structure. By testing the performance parameters based on the structure of 16×16 by the OMNET++ platform, as the result shows, the average insertion loss of LOOKNoC is 3.0%, 11.6%, 4.8% and 16.7% less than that of GWOR, λ-router, Mesh, and CrossBar structures.
基金Information Industry Bureau of Chongqing(200113010 and 200216006)
文摘A sorting algorithm based on the Batcher' s algorithm is presented. An 8X8multistage interconnection network(MIN) is constructed. Applying wavelength division multiplexing(WDM) technology and integrating control mode, the designed network can realize non-blockingcommunication. The time delay of the MIN and the switches needed are also analyzed in theory, thededuced result conforms that the MIN designed previously is feasible. In the case of the samecommunication quality guaranteed, MIN uses the least switches and completes the communication moreefficiently.