This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under ...This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under which there exists a conserved quantity and the form of the conserved quantity. Finally, an example is shown to illustrate the application of the result.展开更多
The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system,...The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
Based on the total time derivative along the trajectory of the system, the unified symmetry of nonholonomic mechanical system with non-Chetaev's type constraints is studied. The definition and criterion of the unifie...Based on the total time derivative along the trajectory of the system, the unified symmetry of nonholonomic mechanical system with non-Chetaev's type constraints is studied. The definition and criterion of the unified symmetry of nonholonomic mechanical systems with non-Ohetaev's type constraints are given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. Two examples are given to illustrate the application of the results.展开更多
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equ...The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.展开更多
Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by we...Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by weak Noether symmetry. Finally, the application of this new results is showed by a practical example.展开更多
The definition and the criterion for a unified symmetry of nonholonomic mechanical systems of non- Chetaev's type with unilateral constraints are presented based on the total time derivative along the trajectory of t...The definition and the criterion for a unified symmetry of nonholonomic mechanical systems of non- Chetaev's type with unilateral constraints are presented based on the total time derivative along the trajectory of the system. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced froth the unified symmetry, is obtained. An example is given to illustrate the application of the results.展开更多
The unified symmetry of a nonholonomic system of non-Chetaev's type in event space under infinitesimal transformations of group is studied. Firstly, the differential equations of motion of the system are given. Secon...The unified symmetry of a nonholonomic system of non-Chetaev's type in event space under infinitesimal transformations of group is studied. Firstly, the differential equations of motion of the system are given. Secondly, the definition and the criterion of the unified symmetry for the system are obtained. Thirdly, a new conserved quantity, besides the Noether conserved quantity and the Hojman conserved quantity, is deduced from the unified symmetry of a nonholonomic system of non-Chetaev's type. Finally, an example is given to illustrate the application of the result.展开更多
This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev non...This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10932002 and 10772025)the Fund for Fundamental Research of Beijing Institute of Technology
文摘This paper studies the symmetry of Lagrangians of nonholonomic systems of non-Chetaev's type. First, the definition and the criterion of the symmetry of the system are given. Secondly, it obtains the condition under which there exists a conserved quantity and the form of the conserved quantity. Finally, an example is shown to illustrate the application of the result.
基金supported by the National Natural Science Foundation of China(Grant No 10572021)the Preparatory Research Foundation of Jiangnan University,China(Grant No 2008LYY011)
文摘The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.
文摘Based on the total time derivative along the trajectory of the system, the unified symmetry of nonholonomic mechanical system with non-Chetaev's type constraints is studied. The definition and criterion of the unified symmetry of nonholonomic mechanical systems with non-Ohetaev's type constraints are given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. Two examples are given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032)
文摘The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Programme Foundation of Institute of Higher Education of China (Grant No 20040007022)
文摘Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by weak Noether symmetry. Finally, the application of this new results is showed by a practical example.
文摘The definition and the criterion for a unified symmetry of nonholonomic mechanical systems of non- Chetaev's type with unilateral constraints are presented based on the total time derivative along the trajectory of the system. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced froth the unified symmetry, is obtained. An example is given to illustrate the application of the results.
文摘The unified symmetry of a nonholonomic system of non-Chetaev's type in event space under infinitesimal transformations of group is studied. Firstly, the differential equations of motion of the system are given. Secondly, the definition and the criterion of the unified symmetry for the system are obtained. Thirdly, a new conserved quantity, besides the Noether conserved quantity and the Hojman conserved quantity, is deduced from the unified symmetry of a nonholonomic system of non-Chetaev's type. Finally, an example is given to illustrate the application of the result.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.