A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoot...A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.1...In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.展开更多
A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices...A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices.Numerical experiments with various random matrices show that they are stable and better than the estimates presented in literatures.We use these upper bounds to improve known error estimates for linear complementarity problems with H-matrices and S-SDD matrices.展开更多
In this paper,by means of constructing the linear complementarity problems into the corresponding absolute value equation,we raise an iteration method,called as the nonlinear lopsided HSS-like modulus-based matrix spl...In this paper,by means of constructing the linear complementarity problems into the corresponding absolute value equation,we raise an iteration method,called as the nonlinear lopsided HSS-like modulus-based matrix splitting iteration method,for solving the linear complementarity problems whose coefficient matrix in R^(n×n)is large sparse and positive definite.From the convergence analysis,it is appreciable to see that the proposed method will converge to its accurate solution under appropriate conditions.Numerical examples demonstrate that the presented method precede to other methods in practical implementation.展开更多
A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theore...A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theorems of the algorithm is established.In addition,some numerical results are reported.展开更多
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa...The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient proje...In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.展开更多
A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solve...A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solves only one linear system of equations and does only one line search at each iteration; (ⅱ) It is well_defined for the vertical linear complementarity problem with vertical block P 0 matrix and any accumulation point of iteration sequence is its solution.Moreover, the iteration sequence is bounded for the vertical linear complementarity problem with vertical block P 0+R 0 matrix; (ⅲ) It has both global linear and local quadratic convergence without strict complementarity. Many existing smoothing Newton methods do not have the property (ⅲ).展开更多
It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of t...It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.展开更多
The existence condition of the solution of special nonlinear penalized equation of the linear complementarity problems is obtained by the relationship between penalized equations and an absolute value equation. Newton...The existence condition of the solution of special nonlinear penalized equation of the linear complementarity problems is obtained by the relationship between penalized equations and an absolute value equation. Newton method is used to solve penalized equation, and then the solution of the linear complementarity problems is obtained. We show that the proposed method is globally and superlinearly convergent when the matrix of complementarity problems of its singular values exceeds 0;numerical results show that our proposed method is very effective and efficient.展开更多
Feasible-interior-point algorithms start from a strictly feasible interior point,but infeassible-interior-point algorithms just need to start from an arbitrary positive point,we give a potential reduction algorithm fr...Feasible-interior-point algorithms start from a strictly feasible interior point,but infeassible-interior-point algorithms just need to start from an arbitrary positive point,we give a potential reduction algorithm from an infeasible-starting-point for a class of non-monotone linear complementarity problem.Its polynomial complexity is analyzed.After finite iterations the algorithm produces an approximate solution of the problem or shows that there is no feasible optimal solution in a large region.展开更多
Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear op...Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm.展开更多
The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Ne...The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Newton method for solving the linear complementarity problem with the regular interval matrix based on the nonlinear penalized equation. Further, we prove that this method is convergent. Numerical experiments are presented to show that the generalized Newton method is effective.展开更多
In this paper we consider some synchronous and asynchronous multisplitting and Schwarz methods for solving the linear complementarity problems. We establish some convergence theorems of the methods by using the concep...In this paper we consider some synchronous and asynchronous multisplitting and Schwarz methods for solving the linear complementarity problems. We establish some convergence theorems of the methods by using the concept of M-splitting.展开更多
Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not ...Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not only includes all the existing relaxation methods for the linear complementarity problems,but also yields a lot of novel ones in the sense of multisplitting.We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H matrix with positive diagonal elements.展开更多
This paper considers semidefinite relaxation for linear and nonlinear complementarity problems.For some particular copositive matrices and tensors,the existence of a solution for the corresponding complementarity prob...This paper considers semidefinite relaxation for linear and nonlinear complementarity problems.For some particular copositive matrices and tensors,the existence of a solution for the corresponding complementarity problems is studied.Under a general assumption,we show that if the solution set of a complementarity problem is nonempty,then we can get a solution by the semidefinite relaxation method;while if it does not have a solution,we can obtain a certificate for the infeasibility.Some numerical examples are given.展开更多
This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over...This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.展开更多
基金Supported by the National Natural Science Foundation of China(12371378,41725017,11901098).
文摘A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
基金supported by the Scientific Computing Research Innovation Team of Guangdong Province(no.2021KCXTD052)the Science and Technology Development Fund,Macao SAR(no.0096/2022/A,0151/2022/A)+3 种基金University of Macao(no.MYRG2020-00035-FST,MYRG2022-00076-FST)the Guangdong Key Construction Discipline Research Capacity Enhancement Project(no.2022ZDJS049)Technology Planning Project of Shaoguan(no.210716094530390)the ScienceFoundation of Shaoguan University(no.SZ2020KJ01).
文摘In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.
基金Supported by the Scientific Research Project of Education Department of Hunan Province(Grant No.21C0837).
文摘A partition reduction method is used to obtain new upper bounds for the inverses of H-matrices and S-strictly diagonally dominant(S-SDD)matrices.The estimates are expressed via the determinants of third order matrices.Numerical experiments with various random matrices show that they are stable and better than the estimates presented in literatures.We use these upper bounds to improve known error estimates for linear complementarity problems with H-matrices and S-SDD matrices.
基金This work is supported by the National Natural Science Foundation of China with No.11461046the Natural Science Foundation of Jiangxi Province of China with Nos.20181ACB20001 and 20161ACB21005.
文摘In this paper,by means of constructing the linear complementarity problems into the corresponding absolute value equation,we raise an iteration method,called as the nonlinear lopsided HSS-like modulus-based matrix splitting iteration method,for solving the linear complementarity problems whose coefficient matrix in R^(n×n)is large sparse and positive definite.From the convergence analysis,it is appreciable to see that the proposed method will converge to its accurate solution under appropriate conditions.Numerical examples demonstrate that the presented method precede to other methods in practical implementation.
文摘A new iterative method,which is called positive interior-point algorithm,is presented for solving the nonlinear complementarity problems.This method is of the desirable feature of robustness.And the convergence theorems of the algorithm is established.In addition,some numerical results are reported.
文摘The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
文摘In this paper, a class of the stochastic generalized linear complementarity problems with finitely many elements is proposed for the first time. Based on the Fischer-Burmeister function, a new conjugate gradient projection method is given for solving the stochastic generalized linear complementarity problems. The global convergence of the conjugate gradient projection method is proved and the related numerical results are also reported.
文摘A one_step smoothing Newton method is proposed for solving the vertical linear complementarity problem based on the so_called aggregation function. The proposed algorithm has the following good features: (ⅰ) It solves only one linear system of equations and does only one line search at each iteration; (ⅱ) It is well_defined for the vertical linear complementarity problem with vertical block P 0 matrix and any accumulation point of iteration sequence is its solution.Moreover, the iteration sequence is bounded for the vertical linear complementarity problem with vertical block P 0+R 0 matrix; (ⅲ) It has both global linear and local quadratic convergence without strict complementarity. Many existing smoothing Newton methods do not have the property (ⅲ).
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDZ047)
文摘It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.
文摘The existence condition of the solution of special nonlinear penalized equation of the linear complementarity problems is obtained by the relationship between penalized equations and an absolute value equation. Newton method is used to solve penalized equation, and then the solution of the linear complementarity problems is obtained. We show that the proposed method is globally and superlinearly convergent when the matrix of complementarity problems of its singular values exceeds 0;numerical results show that our proposed method is very effective and efficient.
基金Supported by the National Natural Science Foun dation of China(70371032)the Doctoral Educational Foundation 0f China of the Ministry of Education(20020486035)
文摘Feasible-interior-point algorithms start from a strictly feasible interior point,but infeassible-interior-point algorithms just need to start from an arbitrary positive point,we give a potential reduction algorithm from an infeasible-starting-point for a class of non-monotone linear complementarity problem.Its polynomial complexity is analyzed.After finite iterations the algorithm produces an approximate solution of the problem or shows that there is no feasible optimal solution in a large region.
基金Supported by the Natural Science Foundation of Hubei Province(Grant No.2008CDZ047)
文摘Mehrotra-type predictor-corrector algorithm, as one of most efficient interior point methods, has become the backbones of most optimization packages. Salahi et al. proposed a cut strategy based algorithm for linear optimization that enjoyed polynomial complexity and maintained its efficiency in practice. We extend their algorithm to P. (~) linear complementar- ity problems. The way of choosing corrector direction for our algorithm is different from theirs: The new algorithm has been proved to have an O((1 + 4k)(17 + 19k)√1+2kn 3/2 log(x0)Ts0/ε) worst case iteration complexity bound. An numerical experiment verifies the feasibility of the new algorithm.
文摘The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Newton method for solving the linear complementarity problem with the regular interval matrix based on the nonlinear penalized equation. Further, we prove that this method is convergent. Numerical experiments are presented to show that the generalized Newton method is effective.
基金Supported by the Chinese National Science Foundation Project (10371035).
文摘In this paper we consider some synchronous and asynchronous multisplitting and Schwarz methods for solving the linear complementarity problems. We establish some convergence theorems of the methods by using the concept of M-splitting.
文摘Abstract In this paper,a class of generalized parallel matrix multisplitting relaxation methods for solving linear complementarity problems on the high speed multiprocessor systems is set up.This class of methods not only includes all the existing relaxation methods for the linear complementarity problems,but also yields a lot of novel ones in the sense of multisplitting.We establish the convergence theories of this class of generalized parallel multisplitting relaxation methods under the condition that the system matrix is an H matrix with positive diagonal elements.
基金supported by the National Natural Science Foundation of China(Nos.12171105,11271206)the Fundamental Research Funds for the Central Universities(No.FRF-DF-19-004).
文摘This paper considers semidefinite relaxation for linear and nonlinear complementarity problems.For some particular copositive matrices and tensors,the existence of a solution for the corresponding complementarity problems is studied.Under a general assumption,we show that if the solution set of a complementarity problem is nonempty,then we can get a solution by the semidefinite relaxation method;while if it does not have a solution,we can obtain a certificate for the infeasibility.Some numerical examples are given.
基金supported by National Natural Science Foundation of China (No. 10771120)
文摘This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.