This paper presents a deep neural network(DNN)-based speech enhancement algorithm based on the soft audible noise masking for the single-channel wind noise reduction. To reduce the low-frequency residual noise, the ps...This paper presents a deep neural network(DNN)-based speech enhancement algorithm based on the soft audible noise masking for the single-channel wind noise reduction. To reduce the low-frequency residual noise, the psychoacoustic model is adopted to calculate the masking threshold from the estimated clean speech spectrum. The gain for noise suppression is obtained based on soft audible noise masking by comparing the estimated wind noise spectrum with the masking threshold. To deal with the abruptly time-varying noisy signals, two separate DNN models are utilized to estimate the spectra of clean speech and wind noise components. Experimental results on the subjective and objective quality tests show that the proposed algorithm achieves the better performance compared with the conventional DNN-based wind noise reduction method.展开更多
Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large ...Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large time-scale. This paper investigates the change of non-stationary self-similarity of network traffic over time,and proposes a method of combining the discrete wavelet transform (DWT) and Schwarz information criterion (SIC) to detect change points of self-similarity in network traffic. The traffic is segmented into pieces around changing points with homogenous characteristics for the Hurst parameter,named local Hurst parameter,and then each piece of network traffic is modeled using fractional Gaussian noise (FGN) model with the local Hurst parameter. The presented experimental performance on data set from the Internet Traffic Archive (ITA) demonstrates that the method is more accurate in describing the non-stationary self-similarity of network traffic.展开更多
基金partially supported by the National Natural Science Foundation of China (Nos.11590772, 11590770)the Pre-research Project for Equipment of General Information System (No.JZX2017-0994/Y306)
文摘This paper presents a deep neural network(DNN)-based speech enhancement algorithm based on the soft audible noise masking for the single-channel wind noise reduction. To reduce the low-frequency residual noise, the psychoacoustic model is adopted to calculate the masking threshold from the estimated clean speech spectrum. The gain for noise suppression is obtained based on soft audible noise masking by comparing the estimated wind noise spectrum with the masking threshold. To deal with the abruptly time-varying noisy signals, two separate DNN models are utilized to estimate the spectra of clean speech and wind noise components. Experimental results on the subjective and objective quality tests show that the proposed algorithm achieves the better performance compared with the conventional DNN-based wind noise reduction method.
基金the National High Technology Research and Development Program (863) of China(Nos. 2005AA145110 and 2006AA01Z436)the Natural Science Foundation of Shanghai of China(No. 05ZR14083)the Pudong New Area Technology Innovation Public Service Platform of China(No. PDPT2005-04)
文摘Modeling of network traffic is a fundamental building block of computer science. Measurements of network traffic demonstrate that self-similarity is one of the basic properties of the network traffic possess at large time-scale. This paper investigates the change of non-stationary self-similarity of network traffic over time,and proposes a method of combining the discrete wavelet transform (DWT) and Schwarz information criterion (SIC) to detect change points of self-similarity in network traffic. The traffic is segmented into pieces around changing points with homogenous characteristics for the Hurst parameter,named local Hurst parameter,and then each piece of network traffic is modeled using fractional Gaussian noise (FGN) model with the local Hurst parameter. The presented experimental performance on data set from the Internet Traffic Archive (ITA) demonstrates that the method is more accurate in describing the non-stationary self-similarity of network traffic.