期刊文献+
共找到4,975篇文章
< 1 2 249 >
每页显示 20 50 100
Segmentation of CAD models using hybrid representation
1
作者 Claude UWIMANA Shengdi ZHOU +4 位作者 Limei YANG Zhuqing LI Norbelt MUTAGISHA Edouard NIYONGABO Bin ZHOU 《虚拟现实与智能硬件(中英文)》 2025年第2期188-202,共15页
In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using singl... In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using single representations,such as meshes,CAD,and point clouds.However,existing methods cannot effectively combine different three-dimensional model types for the direct conversion,alignment,and integrity maintenance of geometric and topological information.Hence,we propose an integration approach that combines the geometric accuracy of CAD data with the flexibility of mesh representations,as well as introduce a unique hybrid representation that combines CAD and mesh models to enhance segmentation accuracy.To combine these two model types,our hybrid system utilizes advanced-neural-network techniques to convert CAD models into mesh models.For complex CAD models,model segmentation is crucial for model retrieval and reuse.In partial retrieval,it aims to segment a complex CAD model into several simple components.The first component of our hybrid system involves advanced mesh-labeling algorithms that harness the digitization of CAD properties to mesh models.The second component integrates labelled face features for CAD segmentation by leveraging the abundant multisemantic information embedded in CAD models.This combination of mesh and CAD not only refines the accuracy of boundary delineation but also provides a comprehensive understanding of the underlying object semantics.This study uses the Fusion 360 Gallery dataset.Experimental results indicate that our hybrid method can segment these models with higher accuracy than other methods that use single representations. 展开更多
关键词 B-RepNet hybrid segmentation CAD models classification MeshCNN MeshCAD-Net
在线阅读 下载PDF
A medical image segmentation model based on SAM with an integrated local multi-scale feature encoder
2
作者 DI Jing ZHU Yunlong LIANG Chan 《Journal of Measurement Science and Instrumentation》 2025年第3期359-370,共12页
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ... Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis. 展开更多
关键词 segment anything model(SAM) medical image segmentation ENCODER decoder multiaxial Hadamard product module(MHPM) cross-branch balancing adapter
在线阅读 下载PDF
Dual-Stream Attention-Based Classification Network for Tibial Plateau Fractures via Diffusion Model Augmentation and Segmentation Map Integration
3
作者 Yi Xie Zhi-wei Hao +8 位作者 Xin-meng Wang Hong-lin Wang Jia-ming Yang Hong Zhou Xu-dong Wang Jia-yao Zhang Hui-wen Yang Peng-ran Liu Zhe-wei Ye 《Current Medical Science》 2025年第1期57-69,共13页
Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(... Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(TPFs).Methods YOLOv8n-cls was used to construct a baseline model on the data of 3781 patients from the Orthopedic Trauma Center of Wuhan Union Hospital.Additionally,a segmentation-guided classification approach was proposed.To enhance the dataset,a diffusion model was further demonstrated for data augmentation.Results The novel method that integrated the segmentation-guided classification and diffusion model augmentation sig-nificantly improved the accuracy and robustness of fracture classification.The average accuracy of classification for TPFs rose from 0.844 to 0.896.The comprehensive performance of the dual-stream model was also significantly enhanced after many rounds of training,with both the macro-area under the curve(AUC)and the micro-AUC increasing from 0.94 to 0.97.By utilizing diffusion model augmentation and segmentation map integration,the model demonstrated superior efficacy in identifying SchatzkerⅠ,achieving an accuracy of 0.880.It yielded an accuracy of 0.898 for SchatzkerⅡandⅢand 0.913 for SchatzkerⅣ;for SchatzkerⅤandⅥ,the accuracy was 0.887;and for intercondylar ridge fracture,the accuracy was 0.923.Conclusion The dual-stream attention-based classification network,which has been verified by many experiments,exhibited great potential in predicting the classification of TPFs.This method facilitates automatic TPF assessment and may assist surgeons in the rapid formulation of surgical plans. 展开更多
关键词 Artificial intelligence YOLOv8 Tibial plateau fracture Diffusion model augmentation segmentation map
暂未订购
PCB CT Image Element Segmentation Model Optimizing the Semantic Perception of Connectivity Relationship
4
作者 Chen Chen Kai Qiao +2 位作者 Jie Yang Jian Chen Bin Yan 《Computers, Materials & Continua》 SCIE EI 2024年第11期2629-2642,共14页
Computed Tomography(CT)is a commonly used technology in Printed Circuit Boards(PCB)non-destructive testing,and element segmentation of CT images is a key subsequent step.With the development of deep learning,researche... Computed Tomography(CT)is a commonly used technology in Printed Circuit Boards(PCB)non-destructive testing,and element segmentation of CT images is a key subsequent step.With the development of deep learning,researchers began to exploit the“pre-training and fine-tuning”training process for multi-element segmentation,reducing the time spent on manual annotation.However,the existing element segmentation model only focuses on the overall accuracy at the pixel level,ignoring whether the element connectivity relationship can be correctly identified.To this end,this paper proposes a PCB CT image element segmentation model optimizing the semantic perception of connectivity relationship(OSPC-seg).The overall training process adopts a“pre-training and fine-tuning”training process.A loss function that optimizes the semantic perception of circuit connectivity relationship(OSPC Loss)is designed from the aspect of alleviating the class imbalance problem and improving the correct connectivity rate.Also,the correct connectivity rate index(CCR)is proposed to evaluate the model’s connectivity relationship recognition capabilities.Experiments show that mIoU and CCR of OSPC-seg on our datasets are 90.1%and 97.0%,improved by 1.5%and 1.6%respectively compared with the baseline model.From visualization results,it can be seen that the segmentation performance of connection positions is significantly improved,which also demonstrates the effectiveness of OSPC-seg. 展开更多
关键词 Semantic segmentation PCB non-destructive testing mask image modeling connectivity relationship
在线阅读 下载PDF
An Efficient Local Radial Basis Function Method for Image Segmentation Based on the Chan-Vese Model
5
作者 Shupeng Qiu Chujin Lin Wei Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1119-1134,共16页
In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussi... In this paper,we consider the Chan–Vese(C-V)model for image segmentation and obtain its numerical solution accurately and efficiently.For this purpose,we present a local radial basis function method based on a Gaussian kernel(GA-LRBF)for spatial discretization.Compared to the standard radial basis functionmethod,this approach consumes less CPU time and maintains good stability because it uses only a small subset of points in the whole computational domain.Additionally,since the Gaussian function has the property of dimensional separation,the GA-LRBF method is suitable for dealing with isotropic images.Finally,a numerical scheme that couples GA-LRBF with the fourth-order Runge–Kutta method is applied to the C-V model,and a comparison of some numerical results demonstrates that this scheme achieves much more reliable image segmentation. 展开更多
关键词 Image segmentation Chan–Vese model local radial basis functionmethod Gaussian kernel Runge–Kuttamethod
在线阅读 下载PDF
High-Precision Brain Tumor Segmentation using a Progressive Layered U-Net(PLU-Net)with Multi-Scale Data Augmentation and Attention Mechanisms on Multimodal Magnetic Resonance Imaging 被引量:1
6
作者 Noman Ahmed Siddiqui Muhammad Tahir Qadri +1 位作者 Muhammad Ovais Akhter Zain Anwar Ali 《Instrumentation》 2025年第1期77-92,共16页
Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progr... Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies. 展开更多
关键词 brain tumor segmentation MRI machine learning BraTS deep learning model PLU-Net
原文传递
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
7
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
在线阅读 下载PDF
Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation
8
作者 ISLAM Md Tauhidul WU Da-Wen +6 位作者 TANG Qing-Qing ZHAO Kai-Yang YIN Teng LI Yan-Fei SHANG Wen-Yi LIU Jing-Yu ZHANG Hai-Xian 《四川大学学报(自然科学版)》 北大核心 2025年第1期79-95,共17页
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t... Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization. 展开更多
关键词 Vessel segmentation Data balancing Data augmentation Dual encoder Attention Mechanism model generalization
在线阅读 下载PDF
Optimizing zero-shot text-based segmentation of remote sensing imagery using SAM and Grounding DINO
9
作者 Mohanad Diab Polychronis Kolokoussis Maria Antonia Brovelli 《Artificial Intelligence in Geosciences》 2025年第1期14-24,共11页
The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no ... The use of AI technologies in remote sensing(RS)tasks has been the focus of many individuals in both the professional and academic domains.Having more accessible interfaces and tools that allow people of little or no experience to intuitively interact with RS data of multiple formats is a potential provided by this integration.However,the use of AI and AI agents to help automate RS-related tasks is still in its infancy stage,with some frameworks and interfaces built on top of well-known vision language models(VLM)such as GPT-4,segment anything model(SAM),and grounding DINO.These tools do promise and draw guidelines on the potentials and limitations of existing solutions concerning the use of said models.In this work,the state of the art AI foundation models(FM)are reviewed and used in a multi-modal manner to ingest RS imagery input and perform zero-shot object detection using natural language.The natural language input is then used to define the classes or labels the model should look for,then,both inputs are fed to the pipeline.The pipeline presented in this work makes up for the shortcomings of the general knowledge FMs by stacking pre-processing and post-processing applications on top of the FMs;these applications include tiling to produce uniform patches of the original image for faster detection,outlier rejection of redundant bounding boxes using statistical and machine learning methods.The pipeline was tested with UAV,aerial and satellite images taken over multiple areas.The accuracy for the semantic segmentation showed improvement from the original 64%to approximately 80%-99%by utilizing the pipeline and techniques proposed in this work.GitHub Repository:MohanadDiab/LangRS. 展开更多
关键词 Foundation models Multi-modal models Vision language models Semantic segmentation segment anything model Earth observation Remote sensing
在线阅读 下载PDF
Pre-trained SAM as data augmentation for image segmentation
10
作者 Junjun Wu Yunbo Rao +1 位作者 Shaoning Zeng Bob Zhang 《CAAI Transactions on Intelligence Technology》 2025年第1期268-282,共15页
Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in ord... Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation. 展开更多
关键词 data augmentation image segmentation large model segment anything model
在线阅读 下载PDF
Streamlined photoacoustic image processing with foundation models:A training-free solution
11
作者 Handi Deng Yucheng Zhou +5 位作者 Jiaxuan Xiang Liujie Gu Yan Luo Hai Feng Mingyuan Liu Cheng Ma 《Journal of Innovative Optical Health Sciences》 2025年第1期55-65,共11页
Foundation models(FMs)have rapidly evolved and have achieved signicant accomplishments in computer vision tasks.Specically,the prompt mechanism conveniently allows users to integrate image prior information into the m... Foundation models(FMs)have rapidly evolved and have achieved signicant accomplishments in computer vision tasks.Specically,the prompt mechanism conveniently allows users to integrate image prior information into the model,making it possible to apply models without any training.Therefore,we proposed a workflow based on foundation models and zero training to solve the tasks of photoacoustic(PA)image processing.We employed the Segment Anything Model(SAM)by setting simple prompts and integrating the model's outputs with prior knowledge of the imaged objects to accomplish various tasks,including:(1)removing the skin signal in three-dimensional PA image rendering;(2)dual speed-of-sound reconstruction,and(3)segmentation ofnger blood vessels.Through these demonstrations,we have concluded that FMs can be directly applied in PA imaging without the requirement for network design and training.This potentially allows for a hands-on,convenient approach to achieving efficient and accurate segmentation of PA images.This paper serves as a comprehensive tutorial,facilitating the mastery of the technique through the provision of code and sample datasets. 展开更多
关键词 Foundation models photoacoustic imaging image segmentation large model
原文传递
Improved SE-UNet network-based semantic segmentation and extraction of hidden geological significance in geological maps
12
作者 Kai Ma Jun-jie Liu +5 位作者 Si-qi Lu Ze-hua Huang Miao Tian Jun-yuan Deng Zhong Xie Qin-jun Qiu 《China Geology》 2025年第4期643-660,共18页
Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster informa... Automatic segmentation and recognition of content and element information in color geological map are of great significance for researchers to analyze the distribution of mineral resources and predict disaster information.This article focuses on color planar raster geological map(geological maps include planar geological maps,columnar maps,and profiles).While existing deep learning approaches are often used to segment general images,their performance is limited due to complex elements,diverse regional features,and complicated backgrounds for color geological map in the domain of geoscience.To address the issue,a color geological map segmentation model is proposed that combines the Felz clustering algorithm and an improved SE-UNet deep learning network(named GeoMSeg).Firstly,a symmetrical encoder-decoder structure backbone network based on UNet is constructed,and the channel attention mechanism SENet has been incorporated to augment the network’s capacity for feature representation,enabling the model to purposefully extract map information.The SE-UNet network is employed for feature extraction from the geological map and obtain coarse segmentation results.Secondly,the Felz clustering algorithm is used for super pixel pre-segmentation of geological maps.The coarse segmentation results are refined and modified based on the super pixel pre-segmentation results to obtain the final segmentation results.This study applies GeoMSeg to the constructed dataset,and the experimental results show that the algorithm proposed in this paper has superior performance compared to other mainstream map segmentation models,with an accuracy of 91.89%and a MIoU of 71.91%. 展开更多
关键词 Geological map UNet model Image segmentation Semantic segmentation Pixel pre-segmentation Clustering algorithm Attention mechanism Deep learning Artificial intelligence Geological survey engineering
在线阅读 下载PDF
Med-ReLU: A Parameter-Free Hybrid Activation Function for Deep Artificial Neural Network Used in Medical Image Segmentation
13
作者 Nawaf Waqas Muhammad Islam +3 位作者 Muhammad Yahya Shabana Habib Mohammed Aloraini Sheroz Khan 《Computers, Materials & Continua》 2025年第8期3029-3051,共23页
Deep learning(DL),derived from the domain of Artificial Neural Networks(ANN),forms one of the most essential components of modern deep learning algorithms.DL segmentation models rely on layer-by-layer convolution-base... Deep learning(DL),derived from the domain of Artificial Neural Networks(ANN),forms one of the most essential components of modern deep learning algorithms.DL segmentation models rely on layer-by-layer convolution-based feature representation,guided by forward and backward propagation.Acritical aspect of this process is the selection of an appropriate activation function(AF)to ensure robustmodel learning.However,existing activation functions often fail to effectively address the vanishing gradient problem or are complicated by the need for manual parameter tuning.Most current research on activation function design focuses on classification tasks using natural image datasets such asMNIST,CIFAR-10,and CIFAR-100.To address this gap,this study proposesMed-ReLU,a novel activation function specifically designed for medical image segmentation.Med-ReLU prevents deep learning models fromsuffering dead neurons or vanishing gradient issues.It is a hybrid activation function that combines the properties of ReLU and Softsign.For positive inputs,Med-ReLU adopts the linear behavior of ReLU to avoid vanishing gradients,while for negative inputs,it exhibits the Softsign’s polynomial convergence,ensuring robust training and avoiding inactive neurons across the training set.The training performance and segmentation accuracy ofMed-ReLU have been thoroughly evaluated,demonstrating stable learning behavior and resistance to overfitting.It consistently outperforms state-of-the-art activation functions inmedical image segmentation tasks.Designed as a parameter-free function,Med-ReLU is simple to implement in complex deep learning architectures,and its effectiveness spans various neural network models and anomaly detection scenarios. 展开更多
关键词 Medical image segmentation U-Net deep learning models activation function
暂未订购
Vector Extraction from Design Drawings for Intelligent 3D Modeling of Transmission Towers
14
作者 Ziqiang Tang Chao Han +5 位作者 Hongwu Li Zhou Fan Ke Sun Yuntian Huang Yuhang Chen Chenxing Wang 《Computers, Materials & Continua》 2025年第2期2813-2829,共17页
Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as... Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask segmentation. Then, based on the obtained shape masks, a vector extraction network guided by heatmaps is designed to extract structural vectors by fusing the features from node heatmap and skeleton heatmap, respectively. Compared with the state-of-the-art methods, experiment results illustrate that the proposed semantic segmentation method can effectively eliminate the interference of many elements on drawings to segment the shape masks effectively, meanwhile, the model trained by the proposed vector extraction network can accurately extract the vectors such as nodes and line connections, avoiding redundant vector detection. The proposed method lays a solid foundation for automatic 3D model reconstruction and contributes to technological advancements in relevant fields. 展开更多
关键词 Design drawings semantic segmentation deep learning vector extraction DIGITIZATION 3D modeling
在线阅读 下载PDF
Intelligent evaluation of sandstone rock structure based on a visual large model
15
作者 REN Yili ZENG Changmin +10 位作者 LI Xin LIU Xi HU Yanxu SU Qianxiao WANG Xiaoming LIN Zhiwei ZHOU Yixiao ZHENG Zilu HU Huiying YANG Yanning HUI Fang 《Petroleum Exploration and Development》 2025年第2期548-558,共11页
Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This ... Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model(SAM).By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters,a multispectral rock particle segmentation model named CoreSAM is constructed,which achieves rock particle edge extraction and type identification.Building upon this,we propose a comprehensive quantitative evaluation system for rock structure,assessing parameters including particle size,sorting,roundness,particle contact and cementation types.The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs.The proposed method enables full-sample,classified particle size analysis and quantitative characterization of parameters like roundness,advancing reservoir evaluation towards more precise,quantitative,intuitive,and comprehensive development. 展开更多
关键词 SANDSTONE rock structure intelligent evaluation segment Anything model fine-tuning particle edge extraction type identification
在线阅读 下载PDF
Switchable Normalization Based Faster RCNN for MRI Brain Tumor Segmentation
16
作者 Rachana Poongodan Dayanand Lal Narayan +2 位作者 Deepika Gadakatte Lokeshwarappa Hirald Dwaraka Praveena Dae-Ki Kang 《Computers, Materials & Continua》 2025年第9期5751-5772,共22页
In recent decades,brain tumors have emerged as a serious neurological disorder that often leads to death.Hence,Brain Tumor Segmentation(BTS)is significant to enable the visualization,classification,and delineation of ... In recent decades,brain tumors have emerged as a serious neurological disorder that often leads to death.Hence,Brain Tumor Segmentation(BTS)is significant to enable the visualization,classification,and delineation of tumor regions in Magnetic Resonance Imaging(MRI).However,BTS remains a challenging task because of noise,non-uniform object texture,diverse image content and clustered objects.To address these challenges,a novel model is implemented in this research.The key objective of this research is to improve segmentation accuracy and generalization in BTS by incorporating Switchable Normalization into Faster R-CNN,which effectively captures the fine-grained tumor features to enhance segmentation precision.MRI images are initially acquired from three online datasets:Dataset 1—Brain Tumor Segmentation(BraTS)2018,Dataset 2—BraTS 2019,and Dataset 3—BraTS 2020.Subsequently,the Switchable Normalization-based Faster Regions with Convolutional Neural Networks(SNFRC)model is proposed for improved BTS in MRI images.In the proposed model,Switchable Normalization is integrated into the conventional architecture,enhancing generalization capability and reducing overfitting to unseen image data,which is essential due to the typically limited size of available datasets.The network depth is increased to obtain discriminative semantic features that improve segmentation performance.Specifically,Switchable Normalization captures the diverse feature representations from the brain images.The Faster R-CNN model develops end-to-end training and effective regional proposal generation,with an enhanced training stability using Switchable Normalization,to perform an effective segmentation in MRI images.From the experimental results,the proposed model attains segmentation accuracies of 99.41%,98.12%,and 96.71%on Datasets 1,2,and 3,respectively,outperforming conventional deep learning models used for BTS. 展开更多
关键词 Brain tumor segmentation computer-aided system deep learning models magnetic resonance imaging medical images switchable normalization
在线阅读 下载PDF
Remote sensing image semantic segmentation algorithm based on improved DeepLabv3+
17
作者 SONG Xirui GE Hongwei LI Ting 《Journal of Measurement Science and Instrumentation》 2025年第2期205-215,共11页
The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack... The convolutional neural network(CNN)method based on DeepLabv3+has some problems in the semantic segmentation task of high-resolution remote sensing images,such as fixed receiving field size of feature extraction,lack of semantic information,high decoder magnification,and insufficient detail retention ability.A hierarchical feature fusion network(HFFNet)was proposed.Firstly,a combination of transformer and CNN architectures was employed for feature extraction from images of varying resolutions.The extracted features were processed independently.Subsequently,the features from the transformer and CNN were fused under the guidance of features from different sources.This fusion process assisted in restoring information more comprehensively during the decoding stage.Furthermore,a spatial channel attention module was designed in the final stage of decoding to refine features and reduce the semantic gap between shallow CNN features and deep decoder features.The experimental results showed that HFFNet had superior performance on UAVid,LoveDA,Potsdam,and Vaihingen datasets,and its cross-linking index was better than DeepLabv3+and other competing methods,showing strong generalization ability. 展开更多
关键词 semantic segmentation high-resolution remote sensing image deep learning transformer model attention mechanism feature fusion ENCODER DECODER
在线阅读 下载PDF
Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net Model
18
作者 Lijuan Zheng Yonghao Li +5 位作者 Zhuangzhuang Sun Yangquan Luo Ying Xu Jun Wang Chengyong Wang Xin Wei 《Chinese Journal of Mechanical Engineering》 2025年第3期1-11,共11页
The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliab... The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliability,and insufficient measurement stability.Micro-CT enables the observation of the internal structures of the sample without the need for slicing,thereby presenting a promising new method for assessing the quality of microholes in PCBs.This study integrates computer vision technology with computed tomography(CT)to propose a method for detecting microhole wall roughness using a U-Net model and image processing algorithms.This study established an unplated copper PCB CT image dataset and trained an improved U-Net model.Validation of the test set demonstrated that the improved model effectively segmented microholes in the PCB CT images.Subsequently,the roughness of the holes’walls was assessed using a customized image-processing algorithm.Comparative analysis between CT detection based on various edge detection algorithms and slice detection revealed that CT detection employing the Canny algorithm closely approximates slice detection,yielding range and average errors of 2.92 and 1.64μm,respectively.Hence,the detection method proposed in this paper offers a novel approach for nondestructive testing of hole wall roughness in the PCB industry. 展开更多
关键词 PCB CT image segmentation Improved U-Net model Hole wall roughness Micro-CT non-destructive testing
在线阅读 下载PDF
EFFECTIVE IMAGE SEGMENTATION FRAMEWORK FOR GAUSSIAN MIXTURE MODEL INCORPORATING LOCAL INFORMATION 被引量:3
19
作者 蔡维玲 丁军娣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期266-274,共9页
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec-... A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results. 展开更多
关键词 pattern recognition image processing image segmentation Gaussian mixture model (GMM) expectation maximization (EM)
在线阅读 下载PDF
Multi-resolution image segmentation based on Gaussian mixture model 被引量:5
20
作者 Tang Yinggan Liu Dong Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期870-874,共5页
Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassificatio... Mixture model based image segmentation method, which assumes that image pixels are independent and do not consider the position relationship between pixels, is not robust to noise and usually leads to misclassification. A new segmentation method, called multi-resolution Ganssian mixture model method, is proposed. First, an image pyramid is constructed and son-father link relationship is built between each level of pyramid. Then the mixture model segmentation method is applied to the top level. The segmentation result on the top level is passed top-down to the bottom level according to the son-father link relationship between levels. The proposed method considers not only local but also global information of image, it overcomes the effect of noise and can obtain better segmentation result. Experimental result demonstrates its effectiveness. 展开更多
关键词 image segmentation MULTI-RESOLUTION Ganssian mixture model.
在线阅读 下载PDF
上一页 1 2 249 下一页 到第
使用帮助 返回顶部