期刊文献+
共找到5,725篇文章
< 1 2 250 >
每页显示 20 50 100
An Ensembled Multi-Layer Automatic-Constructed Weighted Online Broad Learning System for Fault Detection in Cellular Networks
1
作者 Wang Qi Pan Zhiwen +1 位作者 Liu Nan You Xiaohu 《China Communications》 2025年第8期150-167,共18页
6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,faul... 6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,fault detection is investigated in this paper.Considering the fast response and low timeand-computational consumption,it is the first time that the Online Broad Learning System(OBLS)is applied to identify outages in cellular networks.In addition,the Automatic-constructed Online Broad Learning System(AOBLS)is put forward to rationalize its structure and consequently avoid over-fitting and under-fitting.Furthermore,a multi-layer classification structure is proposed to further improve the classification performance.To face the challenges caused by imbalanced data in fault detection problems,a novel weighting strategy is derived to achieve the Multilayer Automatic-constructed Weighted Online Broad Learning System(MAWOBLS)and ensemble learning with retrained Support Vector Machine(SVM),denoted as EMAWOBLS,for superior treatment with this imbalance issue.Simulation results show that the proposed algorithm has excellent performance in detecting faults with satisfactory time usage. 展开更多
关键词 broad learning system(BLS) cell outage detection cellular network fault detection ensemble learning imbalanced classification online broad learning system(OBLS) self-healing network weighted broad learning system(WBLS)
在线阅读 下载PDF
Prediction of Subcellular Localization of Eukaryotic Proteins Using Position-Specific Profiles and Neural Network with Weighted Inputs 被引量:3
2
作者 邹凌云 王正志 黄教民 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第12期1080-1087,共8页
Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain... Subcellular location is one of the key biological characteristics of proteins. Position-specific profiles (PSP) have been introduced as important characteristics of proteins in this article. In this study, to obtain position-specific profiles, the Position Specific lterative-Basic Local Alignment Search Tool (PSI-BLAST) has been used to search for protein sequences in a database. Position-specific scoring matrices are extracted from the profiles as one class of characteristics. Four-part amino acid compositions and lst-7th order dipeptide compositions have also been calculated as the other two classes of characteristics. Therefore, twelve characteristic vectors are extracted from each of the protein sequences. Next, the characteristic vectors are weighed by a simple weighing function and inputted into a BP neural network predictor named PSP-Weighted Neural Network (PSP-WNN). The Levenberg-Marquardt algorithm is employed to adjust the weight matrices and thresholds during the network training instead of the error back propagation algorithm. With a jackknife test on the RH2427 dataset, PSP-WNN has achieved a higher overall prediction accuracy of 88.4% rather than the prediction results by the general BP neural network, Markov model, and fuzzy k-nearest neighbors algorithm on this dataset. In addition, the prediction performance of PSP-WNN has been evaluated with a five-fold cross validation test on the PK7579 dataset and the prediction results have been consistently better than those of the previous method on the basis of several support vector machines, using compositions of both amino acids and amino acid pairs. These results indicate that PSP-WNN is a powerful tool for subcellular localization prediction. At the end of the article, influences on prediction accuracy using different weighting proportions among three characteristic vector categories have been discussed. An appropriate proportion is considered by increasing the prediction accuracy. 展开更多
关键词 subcellular localization PSI-BLAST position-specific scoring matrices weighting function BP neural network
在线阅读 下载PDF
Generalized chaos synchronization of a weighted complex network with different nodes 被引量:10
3
作者 吕翎 李钢 +3 位作者 郭丽 孟乐 邹家蕊 杨明 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期177-183,共7页
This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical n... This paper proposes a method of realizing generalized chaos synchronization of a weighted complex network with different nodes. Chaotic systems with diverse structures are taken as the nodes of the complex dynamical network, the nonlinear terms of the systems are taken as coupling functions, and the relations among the nodes are built through weighted connections. The structure of the coupling functions between the connected nodes is obtained based on Lyapunov stability theory. A complex network with nodes of Lorenz system, Coullet system, RSssler system and the New system is taken as an example for simulation study and the results show that generalized chaos synchronization exists in the whole weighted complex network with different nodes when the coupling strength among the nodes is given with any weight value. The method can be used in realizing generalized chaos synchronization of a weighted complex network with different nodes. Furthermore, both the weight value of the coupling strength among the nodes and the number of the nodes have no effect on the stability of synchronization in the whole complex network. 展开更多
关键词 chaos synchronization weighted network diverse structure Lyapunov stability theory
原文传递
Exploring evolutionary features of directed weighted hazard network in the subway construction 被引量:4
4
作者 Gong-Yu Hou Cong Jin +2 位作者 Zhe-Dong Xu Ping Yu Yi-Yi Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第3期399-407,共9页
A better understanding of previous accidents is an effective way to reduce the occurrence of similar accidents in the future. In this paper, a complex network approach is adopted to construct a directed weighted hazar... A better understanding of previous accidents is an effective way to reduce the occurrence of similar accidents in the future. In this paper, a complex network approach is adopted to construct a directed weighted hazard network(DWHN) to analyze topological features and evolution of accidents in the subway construction. The nodes are hazards and accidents, the edges are multiple relationships of these nodes and the weight of edges are occurrence times of repetitive relationships. The results indicate that the DWHN possesses the property of small-world with small average path length and large clustering coefficient, indicating that hazards have better connectivity and will spread widely and quickly in the network. Moreover,the DWHN has the property of scale-free network for the cumulative degree distribution follows a power-law distribution.It makes DWHN more vulnerable to target attacks. Controlling key nodes with higher degree, strength and betweenness centrality will destroy the connectivity of DWHN and mitigate the spreading of accidents in the network. This study is helpful for discovering inner relationships and evolutionary features of hazards and accidents in the subway construction. 展开更多
关键词 ACCIDENT analysis directed weighted network complex network EVOLUTIONARY FEATURES
原文传递
Weighted Correlation Network Analysis(WGCNA) of Japanese Flounder(Paralichthys olivaceus) Embryo Transcriptome Provides Crucial Gene Sets for Understanding Haploid Syndrome and Rescue by Diploidization 被引量:3
5
作者 ZHAO Haitao DU Xinxin +6 位作者 ZHANG Kai LIU Yuezhong WANG Yujue LIU Jinxiang HE Yan WANG Xubo ZHANG Quanqi 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第6期1441-1450,共10页
Artificial gynogenesis is of great research value in fish genetics and breeding technology. However, existing studies did not explain the mechanism of some interesting phenomena. Severe developmental defects in gynoge... Artificial gynogenesis is of great research value in fish genetics and breeding technology. However, existing studies did not explain the mechanism of some interesting phenomena. Severe developmental defects in gynogenetic haploids can lead to death during hatching. After diploidization of chromosomes, gynogenetic diploids may dispense from the remarkable malformation and restore the viability, although the development time is longer and the survival rate is lower compared with normal diploids. The aim of this study was to reveal key mechanism in haploid syndrome of Japanese flounder, a commercially important marine teleost in East Asia. We measured genome-scale gene expression of flounder haploid, gynogenetic diploid and normal diploid embryos using RNA-Seq, constructed a module-centric co-expression network based on weighted correlation network analysis(WGCNA) and analyzed the biological functions of correlated modules. Module gene content analysis revealed that the formation of gynogenetic haploids was closely related to the abnormality of plasma proteins, and the up-regulation of p53 signaling pathway might rescue gynogenetic embryos from haploid syndrome via regulating cell cycle arrest, apoptosis and DNA repair. Moreover, normal diploid has more robust nervous system. This work provides novel insights into molecular mechanisms in haploid syndrome and the rescue process by gynogenetic diploidization. 展开更多
关键词 Japanese flounder RNA-Seq GYNOGENESIS HAPLOID SYNDROME weighted CORRELATION network analysis
在线阅读 下载PDF
Weighted average consensus problem in networks of agents with diverse time-delays 被引量:4
6
作者 Wenhui Liu Feiqi Deng +1 位作者 Jiarong Liang Xuekui Yan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第6期1056-1064,共9页
This paper studies the weighted average consensus problem for networks of agents with fixed directed asymmetric unbalance information exchange topology. We suppose that the classical distributed consensus protocol is ... This paper studies the weighted average consensus problem for networks of agents with fixed directed asymmetric unbalance information exchange topology. We suppose that the classical distributed consensus protocol is destroyed by diverse time-delays which include communication time-delay and self time-delay. Based on the generalized Nyquist stability criterion and the Gerschgorin disk theorem, some sufficient conditions for the consensus of multi-agent systems are obtained. And we give the expression of the weighted average consensus value for our consensus protocol. Finally, numerical examples are presented to illustrate the theoretical results. 展开更多
关键词 networks of agents distributed control weighted average consensus TIME-DELAY digraph theory
在线阅读 下载PDF
FEW-NNN: A Fuzzy Entropy Weighted Natural Nearest Neighbor Method for Flow-Based Network Traffic Attack Detection 被引量:7
7
作者 Liangchen Chen Shu Gao +2 位作者 Baoxu Liu Zhigang Lu Zhengwei Jiang 《China Communications》 SCIE CSCD 2020年第5期151-167,共17页
Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the foc... Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the focus of many initiatives. Effectively analyzing massive network security data with high dimensions for suspicious flow diagnosis is a huge challenge. In addition, the uneven distribution of network traffic does not fully reflect the differences of class sample features, resulting in the low accuracy of attack detection. To solve these problems, a novel approach called the fuzzy entropy weighted natural nearest neighbor(FEW-NNN) method is proposed to enhance the accuracy and efficiency of flowbased network traffic attack detection. First, the FEW-NNN method uses the Fisher score and deep graph feature learning algorithm to remove unimportant features and reduce the data dimension. Then, according to the proposed natural nearest neighbor searching algorithm(NNN_Searching), the density of data points, each class center and the smallest enclosing sphere radius are determined correspondingly. Finally, a fuzzy entropy weighted KNN classification method based on affinity is proposed, which mainly includes the following three steps: 1、 the feature weights of samples are calculated based on fuzzy entropy values, 2、 the fuzzy memberships of samples are determined based on affinity among samples, and 3、 K-neighbors are selected according to the class-conditional weighted Euclidean distance, the fuzzy membership value of the testing sample is calculated based on the membership of k-neighbors, and then all testing samples are classified according to the fuzzy membership value of the samples belonging to each class;that is, the attack type is determined. The method has been applied to the problem of attack detection and validated based on the famous KDD99 and CICIDS-2017 datasets. From the experimental results shown in this paper, it is observed that the FEW-NNN method improves the accuracy and efficiency of flow-based network traffic attack detection. 展开更多
关键词 fuzzy entropy weighted KNN network attack detection fuzzy membership natural nearest neighbor network security intrusion detection system
在线阅读 下载PDF
A fault diagnosis model based on weighted extension neural network for turbo-generator sets on small samples with noise 被引量:12
8
作者 Tichun WANG Jiayun WANG +1 位作者 Yong WU Xin SHENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2757-2769,共13页
In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis model... In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis models.To address these issues,this paper proposes a fault diagnosis model for turbo-generator sets based on Weighted Extension Neural Network(W-ENN).WENN is a novel neural network which has three types of connection weights and an improved correlation function.The performance of the proposed model is validated against Extension Neural Network(ENN),Support Vector Machine(SVM),Relevance Vector Machine(RVM)and Extreme Learning Machine(ELM)based models.The results indicate that,on noisy small sample sets,the proposed model is superior to the other models in terms of higher identification accuracy with fewer samples and strong noise-tolerant ability.The findings of this study may serve as a powerful fault diagnosis model for turbo-generator sets on noisy small sample sets. 展开更多
关键词 Fault diagnosis Samples with noise Small samples learning Turbo-generator sets weighted Extension Neural network
原文传递
Comparison of Artificial Neural Networks,Geographically Weighted Regression and Cokriging Methods for Predicting the Spatial Distribution of Soil Macronutrients(N,P,and K) 被引量:7
9
作者 Samad EMAMGHOLIZADEH Shahin SHAHSAVANI Mohamad Amin ESLAMI 《Chinese Geographical Science》 SCIE CSCD 2017年第5期747-759,共13页
Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of thi... Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of this study was to evaluate the feasibility of different methods such as artificial neural networks(ANN) and two geostatistical methods(geographically weighted regression(GWR) and cokriging(CK)) to estimate N, P and K contents. For this purpose, soil samples were taken from topsoil(0–30 cm) at 106 points and analyzed for their chemical and physical parameters. These data were divided into calibration(n = 84) and validation(n = 22). Chemical and physical variables including clay, p H and organic carbon(OC) were used as auxiliary soil variables to estimate the N, P and K contents. Results showed that the ANN model(with coefficient of determination R^2 = 0.922 and root mean square error RMSE = 0.0079%) was more accurate compared to the CK model(with R^2 = 0.612 and RMSE = 0.0094%), and the GWR model(with R^2 = 0.872 and RMSE = 0.0089%) to estimate the N variable. The ANN model estimated the P with the RMSE of 3.630 ppm, which was respectively 28.93% and 20.00% less than the RMSE of 4.680 ppm and 4.357 ppm from the CK and GWR models. The estimated K by CK, GWR and ANN models have the RMSE of 76.794 ppm, 75.790 ppm and 52.484 ppm. Results indicated that the performance of the CK model for estimation of macro nutrients(N, P and K) was slightly lower than the GWR model. Also, the accuracy of the ANN model was higher than CK and GWR models, which proved to be more effective and reliable methods for estimating macro nutrients. 展开更多
关键词 precision agriculture soil characteristics INTERPOLATION artificial neural networks geographically weighted regression COKRIGING
在线阅读 下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:6
10
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
暂未订购
Entropy-based link prediction in weighted networks 被引量:2
11
作者 Zhongqi Xu Cunlai Pu +2 位作者 Rajput Ramiz Sharafat Lunbo Li Jian Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期584-590,共7页
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in... Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices. 展开更多
关键词 link prediction weighted networks information entropy
原文传递
Distributed event region fault-tolerance based on weighted distance for wireless sensor networks 被引量:2
12
作者 Li Ping Li Hong Wu Min 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1351-1360,共10页
Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment n... Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network. 展开更多
关键词 event region detection weighted distance distributed fault-tolerance wireless sensor network.
在线阅读 下载PDF
Weighted Gene Co-expression Network Analysis of Gene Modules for the Prognosis of Esophageal Cancer 被引量:2
13
作者 张丛 孙茜 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第3期319-325,共7页
Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict t... Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict the prognosis of esophageal cancer. The matched microarray and RNA sequencing data of 185 patients with esophageal cancer were downloaded from The Cancer Genome Atlas(TCGA), and gene co-expression networks were built without distinguishing between squamous carcinoma and adenocarcinoma. The result showed that 12 modules were associated with one or more survival data such as recurrence status, recurrence time, vital status or vital time. Furthermore, survival analysis showed that 5 out of the 12 modules were related to progression-free survival(PFS) or overall survival(OS). As the most important module, the midnight blue module with 82 genes was related to PFS, apart from the patient age, tumor grade, primary treatment success, and duration of smoking and tumor histological type. Gene ontology enrichment analysis revealed that 'glycoprotein binding' was the top enriched function of midnight blue module genes. Additionally, the blue module was the exclusive gene clusters related to OS. Platelet activating factor receptor(PTAFR) and feline Gardner-Rasheed(FGR) were the top hub genes in both modeling datasets and the STRING protein interaction database. In conclusion, our study provides novel insights into the prognosis-associated genes and screens out candidate biomarkers for esophageal cancer. 展开更多
关键词 esophageal cancer The Cancer Genome Atlas co-expression network analysis weighted gene co-expression network analysis enrichment analysis
暂未订购
Malicious Code Modeling and Analysis in Weighted Scale-Free Networks 被引量:2
14
作者 WANG Changguang WANG Fangwei +1 位作者 ZHANG Yangkai MA Jianfengi 《Wuhan University Journal of Natural Sciences》 CAS 2007年第1期51-54,共4页
We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in... We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process. 展开更多
关键词 malicious code weighted scale-free networks propagation model
在线阅读 下载PDF
Generating weighted community networks based on local events 被引量:1
15
作者 徐琪欣 许新建 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第3期933-938,共6页
Many realistic networks have community structures, namely, a network consists of groups of nodes within which links are dense but among which links are sparse. This paper proposes a growing network model based on loca... Many realistic networks have community structures, namely, a network consists of groups of nodes within which links are dense but among which links are sparse. This paper proposes a growing network model based on local processes, the addition of new nodes intra-community and new links intra- or inter-community. Also, it utilizes the preferential attachment for building connections determined by nodes' strengths, which evolves dynamically during the growth of the system. The resulting network reflects the intrinsic community structure with generalized power-law distributions of nodes' degrees and strengths. 展开更多
关键词 complex networks community networks weighted networks
原文传递
Weighted Evolving Networks with Self-organized Communities 被引量:2
16
作者 XIE Zhou LI Xiang WANG Xiao-Fan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第7期261-266,共6页
In order to describe the self-organization of communities in the evolution of weighted networks, we propose a new evolving model for weighted community-structured networks with the preferential mechanisms functioned i... In order to describe the self-organization of communities in the evolution of weighted networks, we propose a new evolving model for weighted community-structured networks with the preferential mechanisms functioned in different levels according to community sizes and node strengths, respectively. Theoretical analyses and numerical simulations show that our model captures power-law distributions of community sizes, node strengths, and link weights, with tunable exponents of v ≥ 1, γ 〉 2, and α 〉 2, respectively, sharing large clustering coefficients and scaling clustering spectra, and covering the range from disassortative networks to assortative networks. Finally, we apply our new model to the scientific co-authorship networks with both their weighted and unweighted datasets to verify its effectiveness. 展开更多
关键词 weighted network community structure preferential growth SCALE-FREE HIERARCHY
在线阅读 下载PDF
Strength dynamics of weighted evolving networks 被引量:1
17
作者 吴建军 高自友 孙会君 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第1期47-50,共4页
In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strengt... In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strength distribution appeared on the many real weighted networks, such as traffic networks, internet networks. Besides, the relationship between strength and degree is given. Numerical simulations indicate that the strength distribution is strongly related to the strength dynamics decline. The model also provides us with a better description of the real weighted networks. 展开更多
关键词 strength dynamics weighted complex networks
原文传递
Finding Statistically Significant Communities in Networks with Weighted Label Propagation 被引量:2
18
作者 Wei Hu 《Social Networking》 2013年第3期138-146,共9页
Various networks exist in the world today including biological, social, information, and communication networks with the Internet as the largest network of all. One salient structural feature of these networks is the ... Various networks exist in the world today including biological, social, information, and communication networks with the Internet as the largest network of all. One salient structural feature of these networks is the formation of groups or communities of vertices that tend to be more connected to each other within the same group than to those outside. Therefore, the detection of these communities is a topic of great interest and importance in many applications and different algorithms including label propagation have been developed for such purpose. Speaker-listener label propagation algorithm (SLPA) enjoys almost linear time complexity, so desirable in dealing with large networks. As an extension of SLPA, this study presented a novel weighted label propagation algorithm (WLPA), which was tested on four real world social networks with known community structures including the famous Zachary's karate club network. Wilcoxon tests on the communities found in the karate club network by WLPA demonstrated an improved statistical significance over SLPA. Withthehelp of Wilcoxon tests again, we were able to determine the best possible formation of two communities in this network relative to the ground truth partition, which could be used as a new benchmark for assessing community detection algorithms. Finally WLPA predicted better communities than SLPA in two of the three additional real social networks, when compared to the ground truth. 展开更多
关键词 Community Detection Social networkS weighted LABEL Propagation Statistical Significance Zachary’s KARATE CLUB network
暂未订购
A neural network method for estimating weighted mean temperature over China and adjacent areas 被引量:3
19
作者 Long Fengyang Hu Wusheng +1 位作者 Dong Yanfeng Yu Longfei 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期84-90,共7页
To improve the applicability of the global pressure and temperature 2 wet(GPT2w)model in estimating the weighted mean temperature in China and adjacent areas,the error compensation technology based on the neural netwo... To improve the applicability of the global pressure and temperature 2 wet(GPT2w)model in estimating the weighted mean temperature in China and adjacent areas,the error compensation technology based on the neural network was proposed,and a total of 374800 meteorological profiles measured from 2006 to 2015 of 100 radiosonde stations distributed in China and adjacent areas were used to establish an enhanced empirical model for estimating the weighted mean temperature in this region.The data from 2016 to 2018 of the remaining 92 stations in this region was used to test the performance of the proposed model.Results show that the proposed model is about 14.9%better than the GPT2w model and about 7.6%better than the Bevis model with measured surface temperature in accuracy.The performance of the proposed model is significantly improved compared with the GPT2w model not only at different height ranges,but also in different months throughout the year.Moreover,the accuracy of the weighted mean temperature estimation is greatly improved in the northwestern region of China where the radiosonde stations are very rarely distributed.The proposed model shows a great application potential in the nationwide real-time ground-based global navigation satellite system(GNSS)water vapor remote sensing. 展开更多
关键词 weighted mean temperature GPT2w model neural network error compensation GNSS meteorology
在线阅读 下载PDF
Mining Social Groups with Weighted Similarity in Campus Wireless Network 被引量:1
20
作者 吴利兵 薛广涛 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期99-102,共4页
With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this... With the popularity of wireless networks and the prevalence of personal mobile computing devices, understanding the characteristic of wireless network users is of great significance to the network performance. In this study, system logs from two universities, Dartmouth College and Shanghai Jiao Tong University(SJTU), were mined and analyzed. Every user's log was represented by a user profile. A novel weighted social similarity was proposed to quantify the resemblance of users considering influence of location visits. Based on the similarity, an unsupervised learning method was applied to cluster users. Though environment parameters are different, two universities both form many social groups with Pareto distribution of similarity and exponential distribution of group sizes. These findings are very important to the research of wireless network and social network . 展开更多
关键词 wireless network weighted similarity social groups unsupervised learning CLUSTERING
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部